Skip to main content
Log in

Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform

基于经验小波变换优化自适应混合滤波器的心电信号去噪

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are the world’s leading cause of death; therefore cardiac health of the human heart has been a fascinating topic for decades. The electrocardiogram (ECG) signal is a comprehensive non-invasive method for determining cardiac health. Various health practitioners use the ECG signal to ascertain critical information about the human heart. In this article, swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms (EWTs). At first, the white Gaussian noise is added to the input ECG signal and then applied to the EWT. The ECG signals are denoised by the proposed adaptive hybrid filter. The honey badge optimization (HBO) algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters. The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian, electromyogram and electrode motion artifact noises. A comparison of the HBO approach with recursive least square-based adaptive filter, multichannel least means square, and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter. The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.

摘要

心血管疾病是世界上最主要的死亡原因。几十年来,人类心脏的健康一直是一个令人感兴趣 的话题。心电图(ECG)信号是判断心脏健康状况的一种综合性的无创方法。许多健康医师利用心 电图信号来确定心脏的关键信息。本文将群体智能方法应用于生物医学信号处理领域,以增强自适 应混合滤波器和经验小波变换(EWT)。首先对输入心电信号加入高斯白噪声,然后对其进行EWT; 采用提出的自适应混合滤波器对ECG信号进行去噪处理。利用蜜獾优化(HBO)算法优化EWT窗 函数和自适应混合滤波器权重参数。所提方法在MATLAB 2018a中使用MIT-BIH数据集进行仿真, 该数据集包含高斯白噪声、肌电图噪声和电极运动伪影噪声。与基于递归最小二乘的自适应滤波器、 多通道最小均方方法和离散小波变换方法进行比较,验证了HBO方法的有效性。实验结果表明,在 EWT和自适应混合滤波的支持下,HBO方法可以有效应用于心血管信号去噪。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG G, YANG L, LIU M, et al. ECG signal denoising based on deep factor analysis [J]. Biomedical Signal Processing and Control, 2020, 57: 101824.

    Article  Google Scholar 

  2. LASTRE-DOMÍNGUEZ C, SHMALIY Y S, IBARRA-MANZANO O, et al. ECG signal denoising and features extraction using unbiased FIR smoothing [J]. BioMed Research International, 2019, 2019: 2608547.

    Article  Google Scholar 

  3. CHIANG H T, HSIEH Y Y, FU S W, et al. Noise reduction in ECG signals using fully convolutional denoising autoencoders [J]. IEEE Access, 2019, 7: 60806–60813.

    Article  Google Scholar 

  4. CHATTERJEE S, THAKUR R S, YADAV R N, et al. Review of noise removal techniques in ECG signals [J]. IET Signal Processing, 2020, 14(9): 569–590.

    Article  Google Scholar 

  5. BING P P, LIU W, ZHANG Z H. DeepCEDNet: An efficient deep convolutional encoder-decoder networks for ECG signal enhancement [J]. IEEE Access, 2021, 9: 56699–56708.

    Article  Google Scholar 

  6. ZHANG D Y, WANG S S, LI F, et al. An efficient ECG denoising method based on empirical mode decomposition, sample entropy, and improved threshold function [J]. Wireless Communications and Mobile Computing, 2020, 2020: 1–11.

    Google Scholar 

  7. MUKHERJEE P, BAKSHI A. System for ECG signal denoising [C]//2020 International Conference on Communication and Signal Processing. Chennai: IEEE, 2020: 321–325.

    Google Scholar 

  8. SUNDARARAJ V. Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction [J]. International Journal of Biomedical Engineering and Technology, 2019, 31(4): 325.

    Article  Google Scholar 

  9. CHANDRA M, GOEL P, ANAND A, et al. Design and analysis of improved high-speed adaptive filter architectures for ECG signal denoising [J]. Biomedical Signal Processing and Control, 2021, 63: 102221.

    Article  Google Scholar 

  10. VARGAS R N, VEIGA A C P. Electrocardiogram signal denoising by a new noise variation estimate [J]. Research on Biomedical Engineering, 2020, 36(1): 13–20.

    Article  Google Scholar 

  11. HAO H Q, LIU M, XIONG P, et al. Multi-lead model-based ECG signal denoising by guided filter [J]. Engineering Applications of Artificial Intelligence, 2019, 79: 34–44.

    Article  Google Scholar 

  12. BING P P, LIU W, WANG Z, et al. Noise reduction in ECG signal using an effective hybrid scheme [J]. IEEE Access, 2020, 8: 160790–160801.

    Article  Google Scholar 

  13. KUMAR A, TOMAR H, MEHLA V K, et al. Stationary wavelet transform based ECG signal denoising method [J]. ISA Transactions, 2021, 114: 251–262.

    Article  Google Scholar 

  14. GUPTA V, MITTAL M. Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis [J]. Journal of the Institution of Engineers (India): Series B, 2020, 101(5): 451–461.

    Article  Google Scholar 

  15. MANJU B R, SNEHA M R. ECG denoising using Wiener filter and Kalman filter [J]. Procedia Computer Science, 2020, 171: 273–281.

    Article  Google Scholar 

  16. WASIMUDDIN M, ELLEITHY K, ABUZNEID A S, et al. Stages-based ECG signal analysis from traditional signal processing to machine learning approaches: A survey [J]. IEEE Access, 2020, 8: 177782–177803.

    Article  Google Scholar 

  17. WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications [J]. Proceedings of the IEEE, 1975, 63(12): 1692–1716.

    Article  Google Scholar 

  18. SHELTON L Y, CANO G G, COAST D A, et al. Detection of late potentials by adaptive filtering [J]. Journal of Electrocardiology, 1990, 23: 138–143.

    Article  Google Scholar 

  19. MIRZA A, KABIR S M, AYUB S, et al. Impulsive Noise Cancellation of ECG signal based on SSRLS [J]. Procedia Computer Science, 2015, 62: 196–202.

    Article  Google Scholar 

  20. DONG S P, YUAN M, WANG Q S, et al. A modified empirical wavelet transform for acoustic emission signal decomposition in structural health monitoring [J]. Sensors, 2018, 18(5): 1645.

    Article  Google Scholar 

  21. WANG D, ZHAO Y, YI C, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2018, 101: 292–308.

    Article  Google Scholar 

  22. LIU W, CHEN W. Recent advancements in empirical wavelet transform and its applications [J]. IEEE Access, 2019, 7: 103770–103780.

    Article  Google Scholar 

  23. FRANCIS A, MURUGANANTHAM C. An adaptive denoising method using empirical wavelet transform [J]. International Journal of Computer Applications, 2015, 117(21): 18–20.

    Article  Google Scholar 

  24. DAS M, KUMAR R, SAHANA B. Implementation of effective hybrid window function for E.C.G signal denoising [J]. Traitement Du Signal, 2020, 37(1): 119–128.

    Article  Google Scholar 

  25. HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems [J]. Mathematics and Computers in Simulation, 2022, 192: 84–110.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, S., Naruk, M.S. & Tewari, G. Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform. J. Shanghai Jiaotong Univ. (Sci.) (2023). https://doi.org/10.1007/s12204-023-2591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-023-2591-1

Key words

关键词

CLC number

Document code

Navigation