Skip to main content
Log in

Strength-Toughness Improvement of 15-5PH Stainless Steel by Double Aging Treatment

双时效处理对15-5PH不锈钢强度-韧性的改善

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

To obtain better strength-toughness balance of 15-5PH stainless steel, a double aging treatment is proposed to investigate the mechanical properties and microstructure evolution. In this study, Cu precipitates and reversed austenite played a determining role to improve strength-toughness combination. The microstructure was observed using electron backscattered diffraction, transmission electron microscopy and scanning transmission electron microscopy. The volume fractions of Cu precipitates and reversed austenite were calculated with Thermo-Calc software and measured by X-ray diffraction. The results showed that the reversed austenite is formed at the martensitic lath boundaries and its volume fraction also increases with the increase of the aging temperature. At the same time, the size of the Cu precipitates gradually increases. Compared with the traditional single aging and double aging treatment, double aging treatment of 15-5PH stainless steel can increase the toughness while retaining the necessary strength. During double aging of 550 °C × 4h + 580 °C × 1h, 15-5PH stainless steel has the best strength and low-temperature (−40°C) toughness match. Its yield strength, ultimate tensile strength and the Charpy impact energy are 1.037 GPa, 1.086 GPa and 179 J, respectively.

摘要

为了获得15-5PH不锈钢更好的强度-韧性匹配,采用双时效处理方法研究了15-5PH不锈钢的力学性能和组织演变。在本研究中,Cu析出相和逆变奥氏体对强度-韧性匹配的改善起着决定性作用。采用电子背散射衍射、透射电镜术和扫描透射电镜术对其微观结构进行了观察。分别采用Thermo-Calc软件和X射线衍射计算并测量Cu析出相和逆变奥氏体的体积分数。结果表明,逆变奥氏体在马氏体板条边界处形成,其体积分数也随着时效温度的增加而增加,同时,Cu析出相的尺寸也逐渐增大。双时效处理与传统的单时效处理相比,15-5PH不锈钢的双时效处理可以在保持必要强度的同时提高韧性。15-5PH不锈钢在550 ℃ × 4 h + 580 ℃ × 1 h的双时效处理中,具有最佳的强度和低温(− 40 ℃)韧性匹配,其屈服强度为1.037 GPa,抗拉强度为1.086 GPa,低温(− 40 ℃)冲击功为179 J。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGHAIE-KHAFRI M, MOUSAVI ANIJDAN S H, AMIRKAMALI M. Microstructural evolution under ausforming and aging conditions in 17-4 PH stainless steel [J]. Materials Research Express, 2019, 6(10): 106532.

    Article  Google Scholar 

  2. COUTURIER L, DE GEUSER F, DESCOINS M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment [J]. Materials & Design, 2016, 107: 416–425.

    Article  Google Scholar 

  3. MURR L E, MARTINEZ E, HERNANDEZ J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting [J]. Journal of Materials Research and Technology, 2012, 1(3): 167–177.

    Article  Google Scholar 

  4. MURAYAMA M, HONO K, KATAYAMA Y. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C [J]. Metallurgical and Materials Transactions A, 1999, 30(2): 345–353.

    Article  Google Scholar 

  5. HAN G, XIE Z J, LI Z Y, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel [J]. Materials & Design, 2017, 135: 92–101.

    Article  Google Scholar 

  6. YELI G M, AUGER M A, WILFORD K, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Materialia, 2017, 125: 38–49.

    Article  Google Scholar 

  7. PARK E S, YOO D K, SUNG J H, et al. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel [J]. Metals and Materials International, 2004, 10(6): 521–525.

    Article  Google Scholar 

  8. YE D, LI J, JIANG W, et al. Formation of reversed austenite in high temperature tempering process and its effect on mechanical properties of Cr15 super martensitic stainless steel alloyed with copper [J]. Steel Research International, 2013, 84(4): 395–401.

    Article  Google Scholar 

  9. BHAMBROO R, ROYCHOWDHURY S, KAIN V, et al. Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel [J]. Materials Science and Engineering A, 2013, 568: 127–133.

    Article  Google Scholar 

  10. MAN C, DONG C F, KONG D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corrosion Science, 2019, 151: 108–121.

    Article  Google Scholar 

  11. FAN Y H, ZHANG B, YI H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel [J]. Acta Materialia, 2017, 139: 188–195.

    Article  Google Scholar 

  12. SONG Y Y, LI X Y, RONG L J, et al. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels [J]. Materials Chemistry and Physics, 2014, 143(2): 728–734.

    Article  Google Scholar 

  13. ZHOU T, PRASATH BABU R, ODQVIST J, et al. Quantitative electron microscopy and physically based modelling of Cu precipitation in precipitation-hardening martensitic stainless steel 15-5 PH [J]. Materials & Design, 2018, 143: 141–149.

    Article  Google Scholar 

  14. HABIBI BAJGUIRANI H R. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Materials Science and Engineering A, 2002, 338(1/2): 142–159.

    Article  Google Scholar 

  15. SUN Y W, ZHONG Y P, WANG L S. The interaction between e-copper and dislocation in a high copper 17-4PH steel [J]. Materials Science and Engineering A, 2019, 756: 319–327.

    Article  Google Scholar 

  16. NIU M C, ZHOU G, WANG W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Materialia, 2019, 179: 296–307.

    Article  Google Scholar 

  17. CHEN J, LV M Y, TANG S, et al. Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel [J]. Materials Science and Engineering A, 2014, 594: 389–393.

    Article  Google Scholar 

  18. YEN H W, CHEN P Y, HUANG C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Materialia, 2011, 59(16): 6264–6274.

    Article  Google Scholar 

  19. LI Z T, CHAI F, YANG L, et al. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel [J]. Materials & Design, 2020, 191: 108637.

    Article  Google Scholar 

  20. ZHANG C Y, WANG Q F, REN J X, et al. Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time [J]. Materials & Design, 2012, 36: 220–226.

    Article  Google Scholar 

  21. LIU H H, FU P X, LIU H W, et al. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel [J]. Journal of Materials Science & Technology, 2019, 35(11): 2526–2536.

    Article  Google Scholar 

  22. SUN J, WEI S T, LU S P. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe-Cr-Ni-Mo weld metal [J]. Materials Science and Engineering A, 2020, 772: 138739.

    Article  Google Scholar 

  23. KAMIKAWA N, SATO K, MIYAMOTO G, et al. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels [J]. Acta Materialia, 2015, 83: 383–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutuo Zhang  (张玉妥).

Additional information

Foundation item

the Scientific Research Project of China Three Gorges Corporation (No. JD-YJ-05006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Te, R., Zhang, Y. Strength-Toughness Improvement of 15-5PH Stainless Steel by Double Aging Treatment. J. Shanghai Jiaotong Univ. (Sci.) 28, 270–279 (2023). https://doi.org/10.1007/s12204-021-2390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2390-5

Key words

CLC number

Document code

关键词

Navigation