Skip to main content
Log in

Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This paper presents a study of optimal control design for a single-inverted pendulum (SIP) system with the multi-objective particle swarm optimization (MOPSO) algorithm. The proportional derivative (PD) control algorithm is utilized to control the system. Since the SIP system is nonlinear and the output (the pendulum angle) cannot be directly controlled (it is under-actuated), the PD control gains are not tuned with classical approaches. In this work, the MOPSO method is used to obtain the best PD gains. The use of multi-objective optimization algorithm allows the control design of the system without the need of linearization, which is not provided by using classical methods. The multi-objective optimal control design of the nonlinear system involves four design parameters (PD gains) and six objective functions (time-domain performance indices). The Hausdorff distances of consecutive Pareto sets, obtained in the MOPSO iterations, are computed to check the convergence of the MOPSO algorithm. The MOPSO algorithm finds the Pareto set and the Pareto front efficiently. Numerical simulations and experiments of the rotary inverted pendulum system are done to verify this design technique. Numerical and experimental results show that the multi-objective optimal controls offer a wide range of choices including the ones that have comparable performances to the linear quadratic regulator (LQR) control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B arm :

Viscous damping coefficient of arm

B p :

Viscous damping coefficient of pendulum

g :

Gravity constant

l arm :

Rotary arm length from pivot to center of mass

l p :

Distance from pivot to center of mass

L p :

Full length of pendulum

J arm :

Rotary arm moment of inertia about pivot

J p :

Pendulum moment of inertia about pivot

K g :

Total gearbox ratio

K m :

Back electromotive force constant

K t :

Motor torque constant

marm,mp :

Rotary arm mass, pendulum mass

r :

Full length of rotary arm

R m :

Motor armature resistance

V m :

Motor armature voltage

α :

Angle of the pendulum

ζf :

Damping ratio of the digital differentiator

ηgm :

Gearbox efficiency, motor efficiency

θ :

Angle of the rotary arm

ω cf :

Cutoff frequency of the digital differentiator

ω max :

Motor maximum speed

References

  1. HO W K, GAN O P, TAY E B, et al. Performance and gain and phase margins of well-known PID tuning formulas [J]. IEEE Transactions on Control Systems Technology, 1996, 4(4): 473–477.

    Article  Google Scholar 

  2. WANG Q G, LEE T H, FUNG H W, et al. PID tuning for improved performance [J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 457–465.

    Article  Google Scholar 

  3. ZIEGLER J G, NICHOLS N B. Optimum settings for automatic controllers [J]. Journal of Dynamic Systems, Measurement, and Control, 1993, 115 (2): 220–222.

    Article  Google Scholar 

  4. NGATCHOU P, ZAREI A, EI-SHARKAWI M A. Pareto multi-objective optimization [C]//Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems. Arlington, VA, USA: IEEE, 2005: 84–91.

    Google Scholar 

  5. AYALA H V H, DOS SANTOS COELHO L. Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator [J]. Expert Systems with Applications, 2012, 39(10): 8968–8974.

    Article  Google Scholar 

  6. XU Z H, LI S, CHEN Q W, et al. MOPSO based multi-objective trajectory planning for robot manipulators [C]//Proceedings of International Conference on Information Science and Control Engineering. Shanghai, China: IEEE, 2015: 824–828.

    Google Scholar 

  7. CENSOR Y. Pareto optimality in multiobjective problems [J]. Applied Mathematics & Optimization, 1977, 4(4): 41–59.

    Article  MathSciNet  Google Scholar 

  8. DELLNITZ M, SCHÜTZE O, HESTERMEYER T. Covering Pareto sets by multilevel subdivision techniques [J]. Journal of Optimization Theory and Applications, 2005, 124(1): 113–136.

    Article  MathSciNet  Google Scholar 

  9. SRINIVAS M, PATNAIK L M. Genetic algorithms: A survey [J]. Computer, 1994, 27(6): 17–26.

    Article  Google Scholar 

  10. KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm [J]. Journal of Global Optimization, 2007: 39(3): 459–471.

    Article  MathSciNet  Google Scholar 

  11. CHUN J S, KIM M K, JUNG H K, et al. Shape optimization of electromagnetic devices using immune algorithm [J]. IEEE Transactions on Magnetics, 1997, 33(2): 1876–1879.

    Article  Google Scholar 

  12. KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942–1948.

    Chapter  Google Scholar 

  13. KENNEDY J, EBERHART R. Particle swarm optimization [M]//Encyclopedia of Machine Learning. Boston, MA, USA: Springer, 2011: 760–766.

    Google Scholar 

  14. ZHAO S Z, IRUTHAYARAJAN M W, BASKAR S, et al. Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization [J]. Information Sciences, 2011, 181(16): 3323–3335.

    Article  Google Scholar 

  15. GIRIRAJKUMAR S M, JAYARAJ D, KISHAN A R. PSO based tuning of a PID controller for a high performance drilling machine [J]. International Journal of Computer Applications, 2010, 1(19): 12–18.

    Article  Google Scholar 

  16. HASSANZADEH I, MOBAYEN S. PSO-based controller design for rotary inverted pendulum system [J]. Journal of Applied Sciences, 2008, 8(16): 2907–2912.

    Article  Google Scholar 

  17. JAAFAR H I, SULAIMA M F, MOHAMED Z, et al. Optimal PID controller parameters for nonlinear gantry crane system via MOPSO technique [C]//Proceedings of IEEE International Conference on Sustainable Utilization and Development in Engineering and Technology. Selangor, Malaysia: IEEE, 2013: 86–91.

    Google Scholar 

  18. ZHAO Q Q, QIN Z C, SUN J Q. Influence of design reference on tracking performance of feedback control [J]. Transactions of Tianjin University, 2018, 24(1): 66–72.

    Article  Google Scholar 

  19. PARSOPOULOS K E, VRAHATIS M N. Particle swarm optimization method in multiobjective problems [C]//Proceedings of ACM Symposium on Applied Computing. Madrid, Spain: ACM, 2002: 603–607.

    Google Scholar 

  20. COELLO C A C, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization [C]//Proceedings of the Congress on Evolutionary Computation. Honolulu, HI, USA: IEEE, 2002: 1051–1056.

    Google Scholar 

  21. POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization: An overview [J], Swarm Intelligence, 2007, 1(1): 33–57.

    Article  Google Scholar 

  22. COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256–279.

    Article  Google Scholar 

  23. COELLO C A C, LAMONT G B, VAN VELD-HUIZEN D A. Evolutionary algorithms for solving multi-objective problems [M]. 2nd ed. New York, USA: Springer, 2007.

    MATH  Google Scholar 

  24. HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W J. Comparing images using the Hausdorff distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850–863.

    Article  Google Scholar 

  25. SCHÜTZE O, ESQUIVEL X, LARA A, et al. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization [J]. IEEE Transactions on Evolutionary Computation, 2012, 16(4): 504–522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichang Qin  (秦志昌).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 11572215 and 11702162), and the Natural Science Foundation of Shandong Province (No. ZR2018LA009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Xin, Y. & Sun, J. Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System. J. Shanghai Jiaotong Univ. (Sci.) 25, 545–552 (2020). https://doi.org/10.1007/s12204-020-2211-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-020-2211-2

Key words

CLC number

Document code

Navigation