Skip to main content
Log in

Rigorous Running Time Analysis of a Simple Immune-Based Multi-Objective Optimizer for Bi-Objective Pseudo-Boolean Functions

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

A simple immune-based multi-objective optimizer (IBMO) is proposed, and a rigorous running time analysis of IBMO on three proposed bi-objective pseudo-Boolean functions (Bi-Trap, Bi-Plateau and Bi-Jump) is presented. The running time of a global simple evolutionary multi-objective optimizer (GSEMO) using standard bit mutation operator with IBMO using somatic contiguous hypermutation (CHM) operator is compared with these three functions. The results show that the immune-based hypermutation can significantly beat standard bit mutation on some well-known multi-objective pseudo-Boolean functions. The proofs allow us to understand the relationship between the characteristics of the problems and the features of the algorithms more deeply. These analysis results also give us a good inspiration to analyze and design a bio-inspired search heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HANNE T. Global multiobjective optimization with evolutionary algorithms: Selection mechanisms and mutation control [C]//Evolutionary Multi-Criterion Optimization. Ouro Preto, Brazil: EMO, 2001: 197–212.

    Google Scholar 

  2. LAUMANNS M, THIELE L, ZITZLER E. Archiving with guaranteed convergence and diversity in multiobjective optimization [C]//Genetic and Evolutionary Computation Conference. New York, USA: Morgan Kaufmann Publishers, 2002: 439–447.

    Google Scholar 

  3. LAUMANNS M, THIELE L, ZITZLER E. Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions [J]. IEEE Transaction on Evolutionary Computation, 2004, 8(2): 170–182.

    Article  MATH  Google Scholar 

  4. LAUMANNS M, THIELE L, ZITZLER E. Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem [J]. Natural Computing, 2004, 3(1): 37–51.

    Article  MathSciNet  MATH  Google Scholar 

  5. SCHARNOW J, TINNEFELD K, WEGENER I. Fitness landscapes based on sorting and shortest paths problems [C]//International Conference on Parallel Problem Solving from Nature. Berlin, Germany: Springer-Verlag, 2002: 54–63.

    Google Scholar 

  6. QIAN C, YU Y, ZHOU Z H. An analysis on recombination in multi-objective evolutionary optimization [J]. Artificial Intelligence, 2013, 204: 99–119.

    Article  MathSciNet  MATH  Google Scholar 

  7. PENG X, XIA X Y, LIAO W Z, et al. Running time analysis of the Pareto archived evolution strategy on pseudo-Boolean functions [J]. Multimedia Tools and Applications, 2018, 77(9): 11203–11217.

    Article  Google Scholar 

  8. XIA X Y, PENG X, DENG L Y, et al. Performance analysis of evolutionary optimization for the bank account location problem [J]. IEEE Access, 2018, 6: 17756–17767.

    Article  Google Scholar 

  9. KELSEY J, TIMMIS J. Immune inspired somatic contiguous hypermutations for function optimisation [C]//Genetic and Evolutionary Computation Conference. Chicago, IL, USA: Springer-Verlag, 2003: 207–218.

    MATH  Google Scholar 

  10. XIA X Y, ZHOU Y R. On the effectiveness of immune inspired mutation operators in some discrete optimization problems [J]. Information Sciences, 2018, 426: 87–100.

    Article  MathSciNet  Google Scholar 

  11. JANSEN T, ZARGES C. Analysis of randomised search heuristics for dynamic optimization [J]. Evolutionary Computation, 2015, 23(4): 513–541.

    Article  Google Scholar 

  12. JANSEN T, ZARGES C. Computing longest common subsequences with the B-cell algorithm [C]//International Conference on Artificial Immune Systems. Taormina, Italy: Springer-Verlag, 2012: 111–124.

    Google Scholar 

  13. JANSEN T, ZARGES C. Re-evaluating immuneinspired hypermutations using the fixed budget perspective [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(5): 674–688.

    Article  Google Scholar 

  14. XIA X Y, ZHOU Y R. Performance analysis of immune inspired B-cell algorithm for the SAT problem [J]. Microelectronics and Computer, 2016, 33(7): 5–10 (in Chinese).

    Google Scholar 

  15. NEUMANN F. Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem [J]. European Journal of Operational Research, 2007, 181(3): 1620–1629.

    Article  MATH  Google Scholar 

  16. NEUMANN F, WEGENER I. Minimum spanning trees made easier via multi-objective optimization [J]. Natural Computing, 2006, 5 (3): 305–319.

    Google Scholar 

  17. LAI X S, ZHOU Y R, HE J, et al. Performance analysis of evolutionary algorithms for the minimum label spanning tree problem [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(6): 860–872.

    Article  Google Scholar 

  18. FRIEDRICH T, HEBBINGHAUS N, NEUMANN F, et al. Approximating covering problems by randomized search heuristics using multi-objective models [C]//Genetic and Evolutionary Computation Conference. London, UK: ACM, 2007: 797–804.

    Google Scholar 

  19. JANSEN T, ZARGES, C. Analyzing different variants of immune inspired somatic contiguous hypermutations [J]. Theoretical Computer Science, 2011, 412(6): 517–533.

    Article  MathSciNet  MATH  Google Scholar 

  20. MITZENMACHER M, UPFAL E. Propability and computing: Randomized algorithms and probabilistic analysis [M]. Cambridge, UK: Cambridge University Press, 2005.

    Book  MATH  Google Scholar 

  21. JANSEN T, WEGENER I. Evolutionary algorithms: How to cope with plateaus of constant fitness and when to reject strings of the same fitness [J]. IEEE Transactions on Evolutionary Computation, 2001, 5(6): 589–599.

    Article  Google Scholar 

  22. DROSTE S, JANSEN T, WEGENER I. A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs [J]. Evolutionary Computation, 1998, 6(2): 185–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Peng  (彭雪).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 61703183, 61773410, 61375053), and the Public Welfare Technology Research Plan of Zhejiang Province (No. LGG19F030010)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Peng, X., Wang, Y. et al. Rigorous Running Time Analysis of a Simple Immune-Based Multi-Objective Optimizer for Bi-Objective Pseudo-Boolean Functions. J. Shanghai Jiaotong Univ. (Sci.) 23, 827–833 (2018). https://doi.org/10.1007/s12204-018-2004-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-018-2004-z

Key words

CLC number

Document code

Navigation