Skip to main content
Log in

A multiscale superpixel-level salient object detection model using local-global contrast cue

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The goal of salient object detection is to estimate the regions which are most likely to attract human’s visual attention. As an important image preprocessing procedure to reduce the computational complexity, salient object detection is still a challenging problem in computer vision. In this paper, we proposed a salient object detection model by integrating local and global superpixel contrast at multiple scales. Three features are computed to estimate the saliency of superpixel. Two optimization measures are utilized to refine the resulting saliency map. Extensive experiments with the state-of-the-art saliency models on four public datasets demonstrate the effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITTI L, KOCH C, NIEBUR E. A model of saliencybased visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259.

    Article  Google Scholar 

  2. HAREL J, KOCH C, PERONA P. Graph-based visual saliency [C]// Proceedings of Neural Information Processing Systems. Piscataway, NJ: IEEE, 2007: 545–552.

    Google Scholar 

  3. RIGAS I, ECONOMOU G, FOTOPOULOS S. Efficient modeling of visual saliency based on local sparse representation and the use of hamming distance [J]. Computer Vision and Image Understanding, 2015, 134: 33–45.

    Article  Google Scholar 

  4. ZHANG J, WANG M, ZHANG S, et al. Spatiochromatic context modeling for color saliency analysis [J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1177–1189.

    Article  MathSciNet  Google Scholar 

  5. NOURI A, CHARRIER C, LEZORAY O. Multi-scale mesh saliency with local adaptive patches for viewpoint selection [J]. Signal Processing: Image Communication, 2015, 38: 151–166.

    Google Scholar 

  6. LUO W, LI H, LIU G, et al. Global salient information maximization for saliency detection [J]. Signal Processing: Image Communication, 2012, 27(3): 238–248.

    Google Scholar 

  7. WU J, SHEN X, ZHU W, et al. Mesh saliency with global rarity [J]. Graphical Models, 2013, 75(5): 255–264.

    Article  Google Scholar 

  8. XU L, ZENG L, DUAN H. An effective vector model for global-contrast-based saliency detection [J]. Journal of Visual Communication and Image Representation, 2015, 30: 64–74.

    Article  Google Scholar 

  9. YEH H H, LIU K H, CHEN C S. Salient object detection via local saliency estimation and global homogeneity refinement [J]. Pattern Recognition, 2014, 47(4): 1740–1750.

    Article  Google Scholar 

  10. TONG N, LU H, ZHANG Y, et al. Salient object detection via global and local cues [J]. Pattern Recognition, 2015, 48(10): 3258–3267.

    Article  Google Scholar 

  11. FAN Q, QI C. Saliency detection based on global and local short-term sparse representation [J]. Neurocomputing, 2016, 175: 81–89.

    Article  Google Scholar 

  12. ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282.

    Article  Google Scholar 

  13. HE K, SUN J, TANG X. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353.

    Article  Google Scholar 

  14. LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353–367.

    Article  Google Scholar 

  15. ALPERT S, GALUN M, BRANDT A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315–327.

    Article  Google Scholar 

  16. YAN Q, XU L, SHI J, et al. Hierarchical saliency detection [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2013: 1155–1162.

    Google Scholar 

  17. YANG C, ZHANG L. LU H, et al. Saliency detection via graph-based manifold ranking [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2013: 3166-3137.

    Google Scholar 

  18. MURRAY N, VANRELL M, OTAZU X, et al. Saliency estimation using a non-parametric low-level vision model [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2011: 433–440.

    Google Scholar 

  19. HOU X, HAREL J, KOCH C. Image signature: Highlighting sparse salient regions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 194–201.

    Article  Google Scholar 

  20. GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926.

    Article  Google Scholar 

  21. SHEN X, WU Y. A unified approach to salient object detection via low rank matrix recovery [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2012: 853–860.

    Google Scholar 

  22. MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinct? [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2013: 1139–1146.

    Google Scholar 

  23. ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014: 2814–2821.

    Google Scholar 

  24. TONG N, LU H, ZHANG L, et al. Saliency detection with multi-scale superpixels [J]. IEEE Signal Processing Letters, 2014, 21(9): 1035–1039.

    Article  Google Scholar 

  25. TONG N, LU H, RUAN X, et al. Salient object detection via bootstrap learning [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015: 1884–1892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu  (徐 新).

Additional information

Foundation item: the Natural Science Foundation of China (Nos. 61602349, 61375053, and 61273225), the China Scholarship Council (No. 201508420248), and Hubei Chengguang Talented Youth Development Foundation (No. 2015B22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, N., Xu, X., Wang, Y. et al. A multiscale superpixel-level salient object detection model using local-global contrast cue. J. Shanghai Jiaotong Univ. (Sci.) 22, 121–128 (2017). https://doi.org/10.1007/s12204-017-1810-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-017-1810-z

Key words

CLC number

Document code

Navigation