Skip to main content
Log in

Skin penetration of inorganic and metallic nanoparticles

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Nanotechnology is a rapidly growing science of producing and utilizing nano-sized particles. These nanomaterials are already having an impact on health care. Nowadays we are using nanoproducts in various fields, and this leads to direct and indirect exposure in human. Skin is the largest organ of the body and functions as the first-line barrier between the external environment and the internal organs of the human body. Then people worry about the nanoparticle (NP) small enough to penetrate the skin. The potential of solid NPs to penetrate the stratum corneum and to diffuse into underlying structures raises a considerable health and safety issue for their topical use. We review the current state of knowledge on the potential risk to human health presented by skin penetration of NPs nanotechnologies, and explore the robustness of current research strategies and directions to ensure the development of “safe” and publicly accepted nano-based products and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maynard A D. Nanotechnology: A research strategy for addressing risk [R]. Washington, DC, USA: Woodrow Wilson International Center for Scholars, 2006.

    Google Scholar 

  2. Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311: 622–627.

    Article  Google Scholar 

  3. Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature Biotechnology, 2004, 22(8): 969–976.

    Article  Google Scholar 

  4. Cormode D P, Jarzyna P A, Mulder W J M, et al. Modified natural nanoparticles as contrast agents for medical imaging [J]. Advanced Drug Delivery Review, 2010, 62(3): 329–338.

    Article  Google Scholar 

  5. Mccomas K A, Besley J C. Fairness and nanotechnology concern [J]. Risk Analysis, 2011, 31(11): 1749–1761.

    Article  Google Scholar 

  6. Dransfield G P. Inorganic sunscreens [J]. Radiation Protection Dosimetry, 2000, 91(1–3): 271–273.

    Article  Google Scholar 

  7. Antoniou C, Kosmadaki M G, Stratigos A J, et al. Sunscreens: What’s important to know [J]. Journal of the European Academy of Dermatology and Venereology, 2008, 22: 1110–1118.

    Article  Google Scholar 

  8. British Standards Institution (BSI). PAS136 terminology for nanomaterials [EB/OL]. (2011-03-12). http://www.bsigroup.com/en/sectorsandservices/Forms/PAS-136/Download-PAS-136.

    Google Scholar 

  9. Tan M H, Commens C A, Burnett L, et al. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens [J]. Australasian Journal of Dermatology, 1996, 37(4): 185–187.

    Article  Google Scholar 

  10. Lademann J, Weigmann H J, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice [J]. Skin Pharmacology and Applied Skin Physiology, 1999, 12: 247–256.

    Article  Google Scholar 

  11. Schulz J, Hohenberg H, Pflücker F, et al. Distribution of sunscreens on skin [J]. Advanced Drug Delivery Review, 2002, 54(Sup 1): 157–163.

    Article  Google Scholar 

  12. Gottbrath S, Müller-Goymann C. Penetration, and visualization of titanium dioxide microparticles in human stratum corneum: Effect of different formulations on the penetration of titanium dioxide [J]. SOFW Journal, 2003, 3(1): 11–17.

    Google Scholar 

  13. Butz T, Reiner T, Philippe M. Quality of skin as a barrier to ultra-fine particles [EB/OL]. (2006-07-19). http://www.unileipzig.de/nanoderm/index.html.

    Google Scholar 

  14. Menzel F, Reinert T, Vogt J, et al. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION [J]. Nuclear Instruments and Methods in Physics Research Section B, 2004, 219–220: 82–86.

    Article  Google Scholar 

  15. Kertész Z, Szikszai Z, Gontier E, et al. Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts [J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 231: 280–285.

    Article  Google Scholar 

  16. Mavon A, Miquel C, Lejeune O, et al. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen [J]. Skin Pharmacology and Applied Skin Physiology, 2007, 20: 10–20.

    Article  Google Scholar 

  17. Gamer A O, Leibold E, Van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin [J]. Toxicology in Vitro, 2006, 20: 301–307.

    Article  Google Scholar 

  18. Zvyagin A V, Zhao X, Gierden A, et al. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo [J]. Journal of Biomedical Optics, 2008, 13(6): 064031.

    Article  Google Scholar 

  19. Wu J, Liu W, Xue C B, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure [J]. Toxicology Letters, 2009, 191: 1–8.

    Article  Google Scholar 

  20. Sadrieh N, Wokovich A M, Gopee N V, et al. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles [J]. Toxicological Sciences, 2010, 155(1): 156–166.

    Article  Google Scholar 

  21. Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307: 538–544.

    Article  Google Scholar 

  22. Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification [J]. Nano Letters, 2004, 4(11): 2163–2169.

    Article  Google Scholar 

  23. Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles [J]. Nano Letters, 2005, 5(2): 331–338.

    Article  Google Scholar 

  24. Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. Penetration of intact skin by quantum dots with diverse physicochemical properties [J]. Toxicological Sciences, 2006, 91(1): 159–165.

    Article  Google Scholar 

  25. Zhang L W, Monteiro-Riviere N A. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin [J]. Skin Pharmacology and Applied Skin Physiology, 2008, 21: 166–180.

    Article  Google Scholar 

  26. Jeong S H, Kim J H, Yi S M, et al. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method [J]. Biochemical and Biophysical Research Communications, 2010, 394: 612–615.

    Article  Google Scholar 

  27. Lopez R F V, Seto J E, Blankschtein D, et al. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate [J]. Biomaterials, 2011, 32(3): 933–941.

    Article  Google Scholar 

  28. Qin G, Geng S Y, Wang L P, et al. Charge influence of liposome on transdermal delivery efficacy [J]. Soft Matter, 2013, 9: 5649–5656.

    Article  Google Scholar 

  29. Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes [J]. Journal of Investigative Dermatology, 2007, 127: 143–153.

    Article  Google Scholar 

  30. Prow T W, Monteiro-Riviere N Y, Inman A O, et al. Quantum dot penetration into viable human skin [J]. Nanotoxicology, 2012, 6(2): 173–185.

    Article  Google Scholar 

  31. Mortensen L J, Jatana S, Gelein R, et al. Quantification of quantum dot murine skin penetration with UVR barrier impairment [J]. Nanotoxicology, 2013, 7(8): 1386–1398.

    Article  Google Scholar 

  32. Tang L, Zhang C L, Song G M, et al. In vivo skin penetration and metabolic path of quantum dots [J]. Science China, 2013, 56(2): 181–188.

    Article  Google Scholar 

  33. Chu M Q, Wu Q, Wang J X, et al. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin [J]. Nanotechnology, 2007, 18: 455103.

    Article  Google Scholar 

  34. Wang L P, Qin G, Geng S Y, et al. Preparation of zein conjugated quantum dots and their in vivo transdermal delivery capacity through nude mouse skin [J]. Journal of Biomedical Nanotechnology, 2013, 9(3): 367–376.

    Article  Google Scholar 

  35. Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter [J]. Biotechnology Silver Nanoparticle and Bioengineering, 2005, 90(1): 59–63.

    Article  Google Scholar 

  36. Ray R C, Yu H, Fu P P. Toxicity and environmental risks of nanomaterials: Challenges and future needs [J]. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2009, 27(1): 1–35.

    Article  Google Scholar 

  37. Trop M, Novak M, Rodl S, et al. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient [J]. The Journal of Trauma, 2006, 60(3): 648–652.

    Article  Google Scholar 

  38. Lu W T, Senapati D, Wang S G, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes [J]. Chemical Physics Letters, 2010, 487: 92–96.

    Article  Google Scholar 

  39. Koohi M K, Hejazy M, Asadi F, et al. Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits [J]. Journal of Physics: Conference Series, 2011, 304: 012028.

    Google Scholar 

  40. Samberg M E, Oldenburg S J, Monteiro-Riviere N A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro [J]. Environmental Health Perspectives, 2010, 118(3): 407–413.

    Article  Google Scholar 

  41. Korani M, Rezayat S M, Bidgoli S A. Sub-chronic dermal toxicity of silver nanoparticles in Guinea pig: Special emphasis to heart, bone and kidney toxicities [J]. Iranian Journal of Pharmaceutical Research, 2013, 12(3): 511–519.

    Google Scholar 

  42. Connor E E, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J]. Small, 2005, 1(3): 325–327.

    Article  Google Scholar 

  43. Sonavane G, Tomoda K, Sano A, et al. In vitro permeation of gold nanoparticles through rat skin and rat intestion: Effect of particle size [J]. Colloids Surface B: Biointerfaces, 2008, 65: 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ye Wang  (王瑾晔).

Additional information

Foundation item: the International Science and Technology Cooperation Program of China (No. 2012DFA30270) and the Key Basic Research Program of Shanghai Municipal Science and Technology Commission (No. 13JC1403400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Lp., Wang, Jy. Skin penetration of inorganic and metallic nanoparticles. J. Shanghai Jiaotong Univ. (Sci.) 19, 691–697 (2014). https://doi.org/10.1007/s12204-014-1567-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-014-1567-6

Key words

CLC number

Navigation