Skip to main content
Log in

Reproducibility in surface-enhanced Raman spectroscopy

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types: ➀ single particles and ➁ arrays on substrate that are directly used to detect molecules or other components. In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands’ position from recent literatures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moskovits M. Surface-enhanced spectroscopy [J]. Reviews of Modern Physics, 1985, 57(3): 783–826.

    Article  Google Scholar 

  2. Otto A, Mrozek I, Grabhorn H, et al. Surfaceenhanced Raman scattering [J]. Journal of Physics: Condensed Matter, 1992, 4(5): 1143–1212.

    Google Scholar 

  3. Tian Z Q. Surface-enhanced Raman spectroscopy: Advancements and applications [J]. Journal of Raman Spectroscopy, 2005, 36(6–7): 466–470.

    Article  Google Scholar 

  4. Viets C, Hill W. Single-fibre surface-enhanced Raman sensors with angled tips [J]. Journal of Raman Spectroscopy, 2000, 31(7): 625–631.

    Article  Google Scholar 

  5. Brown R J C, Milton MJ T. Analytical techniques for trace element analysis: An overview [J]. Trends in Analytical Chemistry, 2005, 24(3): 266–274.

    Article  Google Scholar 

  6. Brown R J C, Milton MJ T. Developments in accurate and traceable chemical measurements [J]. Chemical Society Reviews, 2007, 36(6): 904–913.

    Article  Google Scholar 

  7. Brown R J C, Yardley R E, Brown A S, et al. Analytical methodologies with very low blank levels: Implications for practical and empirical evaluations of the limit of detection [J]. Analytical Letters, 2006, 39(6): 1229–1241.

    Article  Google Scholar 

  8. Qu L L, Li D W, Xue J Q, et al. Batch fabrication of disposable screen printed SERS arrays [J]. Lab on a Chip, 2012, 12(5): 876–881.

    Article  Google Scholar 

  9. Kang T, Yoo S M, Yoon I, et al. Au nanowireonfilm SERRS sensor for ultrasensitive Hg2+ detection [J]. Chemistry: A European Journal, 2011, 17(7): 2211–2214.

    Article  Google Scholar 

  10. Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS) [J]. Physical Review Letters, 1997, 78(9): 1667–1671.

    Article  Google Scholar 

  11. Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102–1106.

    Article  Google Scholar 

  12. Pettinger B. Single-molecule surface-and tipenhanced Raman spectroscopy [J]. Molecular Physics, 2010, 108(16): 2039–2059.

    Article  Google Scholar 

  13. Lu X, Rycenga M, Skrabalak S E, et al. Chemical synthesis of novel plasmonic nanoparticles [J]. Annual review of Physical Chemistry, 2009, 60(1):167–192.

    Article  Google Scholar 

  14. Le Ru E C, Etchegoin P G. Quantifying SERS enhancements [J]. MRS Bulletin, 2013, 38(8): 631–640.

    Article  Google Scholar 

  15. Motl N E, Smith A F, Desantis C J, et al. Engineering plasmonic metal colloids through composition and structural design [J]. Chemical Society Reviews, 2014, 43(11): 3823–3834.

    Article  Google Scholar 

  16. Ye J, Wen F, Sobhani H, et al. Plasmonic nanoclusters: Near field properties of the Fano resonance interrogated with SERS [J]. Nano Letters, 2012, 12(3): 1660–1667.

    Article  Google Scholar 

  17. Meyer S A, Le Ru E C, Etchegoin P G. Quantifying resonant Raman cross sections with SERS [J]. The Journal of Physical Chemistry A, 2010, 114(17): 5515–5519.

    Article  Google Scholar 

  18. Banholzer M J, Millstone J E, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J]. Chemical Society Reviews, 2008, 37(5): 885–897.

    Article  Google Scholar 

  19. Ko H, Singamaneni S, Tsukruk V V. Nanostructured surfaces and assemblies as SERS media [J]. Small, 2008, 4(10): 1576–1599.

    Article  Google Scholar 

  20. Caldwell J D, Glembocki O, Bezares F J, et al. Plasmonic nanopillar arrays for large-area, highenhancement surface-enhanced Raman scattering sensors [J]. ACS Nano, 2011, 5(5): 4046–4055.

    Article  Google Scholar 

  21. Lin XM, Cui Y, Xu Y H, et al. Surface-enhanced Raman spectroscopy: Substrate-related issues [J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1729–1745.

    Article  Google Scholar 

  22. Abu Hatab N A, Oran J M, Sepaniak M J. Surfaceenhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J]. ACS Nano, 2008, 2(2): 377–385.

    Article  Google Scholar 

  23. Mcfarland A D, Young M A, Dieringer J A, et al. Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J]. The Journal of Physical Chemistry B, 2005, 109(22): 11279–11285.

    Article  Google Scholar 

  24. Brolo A G, Arctander E, Gordon R, et al. Nanohole-enhanced Raman scattering [J]. Nano Letters, 2004, 4(10): 2015–2018.

    Article  Google Scholar 

  25. Zhang X, Zhao J, Whitney A V, et al. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarkerr detection [J]. Journal of the American Chemical Society, 2006, 128(31): 10304–10309.

    Article  Google Scholar 

  26. Yang S, Hricko P J, Huang P H, et al. Superhydrophobic surface enhanced Raman scattering sensing using Janus particle arrays realized by sitespecific electrochemical growth [J]. Journal of Materials Chemistry C, 2014, 2(3): 542–547.

    Article  Google Scholar 

  27. Lee Y J, Schade N B, Sun L, et al. Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics [J]. ACS Nano, 2013, 7(12): 11064–11070.

    Article  Google Scholar 

  28. Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology, 2011, 6(7): 452–460.

    Article  Google Scholar 

  29. Bohren C F, Huffman D R. Absorption and scattering of light by small particles [M]. New York: Wiley, 1983: 82–129.

    Google Scholar 

  30. Ye J, Van Dorpe P. Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap [J]. Nanoscale, 2012, 4(22): 7205–7211.

    Article  Google Scholar 

  31. Luo Y, Aubry A, Pendry J. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach [J]. Physical Review B, 2011, 83(15): 155422.

    Article  Google Scholar 

  32. Ye J, Van Dorpe P. Improvement of figure of merit for gold nanobar array plasmonic sensors [J]. Plasmonics, 2011, 6(4): 665–671.

    Article  Google Scholar 

  33. Ye J, Van Dorpe P. Nanocrosses with highly tunable double resonances for near-infrared surface-enhanced Raman scattering [J]. International Journal of Optics, 2012, 2012: 745982.

    Google Scholar 

  34. Jin J M. The finite element method in electromagnetics [M]. New York, USA: Wiley, 2002.

    Google Scholar 

  35. Li L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors [J]. Journal of Optics A: Pure and Applied Optics, 2003, 5(4): 345–355.

    Article  Google Scholar 

  36. Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? [J]. Angewandte Chemie International Edition, 2009, 48(1): 60–103.

    Article  Google Scholar 

  37. Brown K R, Walter D G, Natan M J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J]. Chemistry of Materials, 2000, 12(2): 306–313.

    Article  Google Scholar 

  38. Cialla D, März A, Böhme R, et al. Surfaceenhanced Raman spectroscopy (SERS): Progress and trends [J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27–54

    Article  Google Scholar 

  39. Jin R, Egusa S, Scherer N F. Thermally-induced formation of atomic Au clusters and conversion into nanocubes [J]. Journal of the American Chemical Society, 2004, 126(32): 9900–9901.

    Article  Google Scholar 

  40. Mclellan J M, Li Z Y, Siekkinen A R, et al. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization [J]. Nano Letters, 2007, 7(4): 1013–1017.

    Article  Google Scholar 

  41. Fang J, Liu S, Li Z. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor [J]. Biomaterials, 2011, 32(21): 4877–4884.

    Article  Google Scholar 

  42. Kim J H, Kang T, Yoo S M, et al. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering [J]. Nanotechnology, 2009, 20(23): 235302.

    Article  Google Scholar 

  43. Alexander T A. Applications of surface-enhanced raman spectroscopy (SERS) for biosensing: An analysis of reproducible, commercially available substrates [J]. Proceedings of SPIE, 2005, 6007: 600703.

    Article  Google Scholar 

  44. Camden J P, Dieringer J A, Zhao J, et al. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing [J]. Accounts of Chemical Research, 2008, 41(12): 1653–1661.

    Article  Google Scholar 

  45. Brown R J C, Milton M J T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS) [J]. Journal of Raman Spectroscopy, 2008, 39(10): 1313–1326.

    Article  Google Scholar 

  46. Ebbesen T W, Lezec H, Ghaemi H, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667–669.

    Article  Google Scholar 

  47. Najiminaini M, Vasefi F, Kaminska B, et al. Nanohole-array-based device for 2D snapshot multispectral imaging [J]. Scientific Reports, 2013, 3(2589):02589.

    Google Scholar 

  48. Tellez G A C, Hassan S, Tait R N, et al. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing [J]. Lab on a Chip, 2013, 13: 2541–2546.

    Article  Google Scholar 

  49. Chang S H, Gray S K, Schatz G C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films [J]. Optics Express, 2005, 13(8): 3150–3165.

    Article  Google Scholar 

  50. Gordon R, Brolo A, Mckinnon A, et al. Strong polarization in the optical transmission through elliptical nanohole arrays [J]. Physical Review Letters, 2004, 92(3): 037401.

    Article  Google Scholar 

  51. Tetz K A, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance [J]. Optics Letters, 2006, 31(10): 1528–1530.

    Article  Google Scholar 

  52. Yu Q, Guan P, Qin D, et al. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays [J]. Nano Letters, 2008, 8(7): 1923–1928.

    Article  Google Scholar 

  53. Yasukuni R, Ouhenia-Ouadahi K, Boubekeur-Lecaque L, et al. Silica-coated gold nanorod arrays for nanoplasmonics devices [J]. Langmuir, 2013, 29(41): 12633–12637.

    Article  Google Scholar 

  54. Lanterbecq D, Van Deun R, Morarescu R, et al. Resonance secondary radiation enhanced by quadrupole mode of plasmonic arrays [J]. Optics Communications, 2013, 308: 152–158.

    Article  Google Scholar 

  55. Gopinath A, Boriskina S V, Reinhard B M, et al. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS) [J]. Optics Express, 2009, 17(5): 3741–3753.

    Article  Google Scholar 

  56. Etchegoin P G, Le Ru E C. A perspective on single molecule SERS: Current status and future challenges [J]. Physical Chemistry Chemical Physics, 2008, 10(40): 6079–6089.

    Article  Google Scholar 

  57. Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule [J]. Nano Letters, 2010, 10(10): 4040–4048.

    Article  Google Scholar 

  58. Ward D R, Grady N K, Levin C S, et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy [J]. Nano Letters, 2007, 7(5): 1396–1400.

    Article  Google Scholar 

  59. Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer [J]. Nano Letters, 2009, 9(2): 887–891.

    Article  Google Scholar 

  60. Cho W J, Kim Y, Kim J K. Ultrahigh-density array of silver nanoclusters for SERS Substrate with high sensitivity and excellent reproducibility [J]. ACS Nano, 2012, 6(1): 249–255.

    Article  Google Scholar 

  61. Halvorson R A, Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses [J]. Environmental Science & Technology, 2010, 44(20): 7749–7755.

    Article  Google Scholar 

  62. Sriram S, Bhaskaran M, Chen S, et al. Influence of electric field on SERS: Frequency effects, intensity changes, and susceptible bonds [J]. Journal of the American Chemical Society, 2011, 134(10): 4646–4653.

    Article  Google Scholar 

  63. Gao X, Davies J P, Weaver M J. Test of surface selection rules for surface-enhanced Raman scattering: The orientation of adsorbed benzene and monosubstituted benzenes on gold [J]. Journal of Physical Chemistry, 1990, 94(17): 6858–6864.

    Article  Google Scholar 

  64. Moskovits M, Suh J S. Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver [J]. Journal of Physical Chemistry, 1984, 88(23): 5526–5530.

    Article  Google Scholar 

  65. Le Ru E C, Meyer S, Artur C, et al. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces [J]. Chemical Communications, 2011, 47(13): 3903–3905.

    Article  Google Scholar 

  66. Chen T, Wang H, Chen G, et al. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints [J]. ACS Nano, 2010, 4(6): 3087–3094.

    Article  Google Scholar 

  67. Etchegoin P G, Lacharmoise P D, Le Ru E C. Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors [J]. Analytical Chemistry, 2008, 81(2): 682–688.

    Article  Google Scholar 

  68. Takahashi M, Niwa M, Ito M. Vibrational frequency shifts of adsorbed pyridazine on a silver electrode studied by SERS [J]. Journal of Physical Chemistry, 1987, 91(1): 11–14.

    Article  Google Scholar 

  69. Yaghobian F, Korn T, Schüller C. Frequency shift in graphene-enhanced Raman signal of molecules [J]. ChemPhysChem, 2012, 13(18): 4271–4275.

    Article  Google Scholar 

  70. Yano T A, Verma P, Saito Y, et al. Pressureassisted tip-enhanced Raman imaging at a resolution of a few nanometres [J]. Nature Photonics, 2009, 3(8): 473–477.

    Article  Google Scholar 

  71. Meléndez-Pagán Y, Ben-Amotz D. Intermolecular forces and bond length changes in high-pressure fluids: Vibrational spectroscopic measurement and generalized perturbed hard fluid analysis [J]. The Journal of Physical Chemistry B, 2000, 104(32): 7858–7866.

    Article  Google Scholar 

  72. Kho K W, Dinish U S, Kumar A, et al. Frequency shifts in SERS for biosensing [J]. ACS Nano, 2012, 6(6): 4892–4902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ye  (叶 坚).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 21375087) and the Natural Science Foundation of Shanghai (No. 13ZR1422100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, M., Ye, J. Reproducibility in surface-enhanced Raman spectroscopy. J. Shanghai Jiaotong Univ. (Sci.) 19, 681–690 (2014). https://doi.org/10.1007/s12204-014-1566-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-014-1566-7

Key words

CLC number

Navigation