Skip to main content
Log in

Distributed cooperative coverage of mobile robots with consensus-based connectivity estimation

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This paper deals with the discrete-time connected coverage problem with the constraint that only local information can be utilized for each robot. In such distributed framework, global connectivity characterized by the second smallest eigenvalue of topology Laplacian is estimated through introducing distributed minimaltime consensus algorithm and power iteration algorithm. A self-deployment algorithm is developed to disperse the robots with the precondition that the estimated second smallest eigenvalue is positive at each time-step. Since thus connectivity constraint does not impose to preserve some certain edges, the self-deployment strategy developed in this paper reserves a sufficient degree of freedom for the motion of robots. Theoretical analysis demonstrates that each pair of neighbor robots can finally reach the largest objective distance from each other while the group keeps connected all the time, which is also shown by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Y U, Fukunaga A S, Kahng A B. Cooperative mobile robotics: Antecedents and direcions[J]. Autonomous Robots, 1997, 4(1): 7–27.

    Article  Google Scholar 

  2. Kan Z, Dani A P, Shea J M, et al. Network connectivity preserving formation stabilization and obstacle avoidance via a decentralized controller [J]. IEEE Transactions on Robotics and Automation, 2012, 57(7): 1827–1832.

    MathSciNet  Google Scholar 

  3. Wang X, Xing G, Zhang Y, et al. Integrated coverage and connectivity configuration in wireless sensor networks [C]//Proceedings of the 1st International Conference on Embedded Networked. Los Angeles, CA, USA: ACM, 2003: 28–39.

    Google Scholar 

  4. Miao Z, Cui L, Zhang B, et al. Deployment patterns for k-coverage and l-connectivity in wireless sensor networks [C]//IET International Conference on Wireless Sensor Network. Beijing: IET, 2010: 73–77.

    Google Scholar 

  5. Ammari H M, Das S K. Centralized and clustered k-coverage protocols for wireless sensor networks [J]. IEEE Transactions on Computers, 2012, 61(1): 118–133.

    Article  MathSciNet  Google Scholar 

  6. Yun Z, Bai X, Xuan D, et al. Optimal deployment patterns for full coverage and k-connectivity (k ≤ 6) wireless sensor networks [J]. IEEE/ACM Transactions on Networking, 2010, 18(3): 934–947.

    Article  Google Scholar 

  7. Howard A, Mataric M J, Sukhatme G S. An incremental self-deployment algorithm for mobile sensor networks [J]. Autonomous Robots, Special Issue on Intelligent Embedded Systems, 2002, 13(2): 113–126.

    MATH  Google Scholar 

  8. Batalin M A, Sukhatme G S. Spreading out: A local approach to multi-robot coverage [C]//6th International Conference on Distributed Autonomous Robotic Systems (DSRS02). Tokyo, Japan: Springer, 2002: 373–382.

    Chapter  Google Scholar 

  9. Heo N, Varshney P K. Energy-efficient deployment of intelligent mobile sensor networks [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2005, 35(1): 78–92.

    Article  Google Scholar 

  10. Cortes J, Martinez S, Karatas T, et al. Coverage control for mobile sensing networks [J]. IEEE Transactions on Robotics and Automation, 2004, 20(2): 243–255.

    Article  Google Scholar 

  11. Laventall K, Cortes J. Coverage control by multirobot networks with limited-range anisotropic sensory [J]. International Journal of Control, 2009, 82(6): 1113–1121.

    Article  MATH  MathSciNet  Google Scholar 

  12. Li W, Cassandras C G. Distributed cooperative coverage control of sensor networks [C]//Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005: 2542–2547.

    Chapter  Google Scholar 

  13. Podur S, Sukhatme G S. Constrained coverage for mobile sensor networks [C]//IEEE International Conference on Robotics and Automation. New Orleans, LA, USA: IEEE, 2004: 165–172.

    Google Scholar 

  14. Li J, Cui L, Zhang B. Self-deployment by distance and orientation control for mobile sensor networks [C]//2010 IEEE International Conference on Networking, Sensing and Control (ICNSC). Chicage, IL, USA: IEEE, 2010: 549–553.

    Chapter  Google Scholar 

  15. Ji M, Egerstedt M. Distributed coordination control of multiagent systems while preserving connectedness [J]. IEEE Transactions on Robotics, 2007, 23(4): 693–703.

    Article  Google Scholar 

  16. Dimarogonas D V, Kyriakopoulos K J. Connectedness preserving distributed swarm aggregation for multiple kinematic robots [J]. IEEE Transactions on Robotics, 2008, 24(5): 1213–1223.

    Article  Google Scholar 

  17. Zavlanos M M, Pappas G J. Potential fields for maintaining connectivity of mobile networks [J]. IEEE Transactions on Robotics, 2007, 23(4): 812–816.

    Article  Google Scholar 

  18. Ando H, Osuzuki Y, Yamashita M. Distributed memoryless point convergence algorithm for mobile robots with limited visibility [J]. IEEE Transactions on Robotics and Automation, 1999, 15(5): 818–828.

    Article  Google Scholar 

  19. Li X L, Xi Y G. Distributed connected coverage control for groups of mobile agents [J]. International Journal of Control, 2010, 83(7): 1347–1363.

    Article  MATH  MathSciNet  Google Scholar 

  20. Razafindralambo T, Simplot-Ryl D. Connectivity preservation and coverage schemes for wireless sensor networks [J]. IEEE Transactions on Automatic Control, 2011, 56(10): 2418–2428.

    Article  MathSciNet  Google Scholar 

  21. Reich J, Misra V, Rubenstein D, et al. Connectivity maintenance in mobile wireless networks via constrained mobility [J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 935–950.

    Article  Google Scholar 

  22. Kim Y, Mesbahi M. On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian [J]. IEEE Transactions on Automatic Control, 2006, 51(1): 116–120.

    Article  MathSciNet  Google Scholar 

  23. Yang P, Freeman R A, Gordon G J, et al. Decentralized estimation and control of graph connectivity for mobile sensor networks [J]. Automatica, 2010, 46: 390–396.

    Article  MATH  MathSciNet  Google Scholar 

  24. Horn R, Johnson C. Matrix analysis [M]. UT, USA: Cambridge University Press, 1990.

    Google Scholar 

  25. Sundaram S, Hadjicostis C N. Finite-time distributed consensus in graphs with time-invariant topologies [C]//Proceedings of American Control Conference. New York, USA: IEEE, 2007: 711–716.

    Google Scholar 

  26. Yuan Y, Stan G, Shi L, et al. Decentralised minimal time consensus [J]. Automatica, 2013, 49(5): 1227–1235.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-li Li  (李晓丽).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 61203073 and 61271114), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120075120008), the Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education, China (No. SCIP2012002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xl., Zhao, Sg. & Liu, H. Distributed cooperative coverage of mobile robots with consensus-based connectivity estimation. J. Shanghai Jiaotong Univ. (Sci.) 19, 279–286 (2014). https://doi.org/10.1007/s12204-014-1500-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-014-1500-z

Key words

CLC number

Navigation