Skip to main content
Log in

Metalenses: from design principles to functional applications

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Lens is a basic optical element that is widely used in daily life, such as in cameras, glasses, and microscopes. Conventional lenses are designed based on the classical refractive optics, which results in inevitable imaging aberrations, such as chromatic aberration, spherical aberration and coma. To solve these problems, conventional imaging systems impose multiple curved lenses with different thicknesses and materials to eliminate these aberrations. As a unique photonic technology, metasurfaces can accurately manipulate the wavefront of light to produce fascinating and peculiar optical phenomena, which has stimulated researchers’ extensive interests in the field of planar optics. Starting from the introduction of phase modulation methods, this review summarizes the design principles and characteristics of metalenses. Although the imaging quality of existing metalenses is not necessarily better than that of conventional lenses, the multi-dimensional and multi-degree-of-freedom control of metasurfaces provides metalenses with novel functions that are extremely challenging or impossible to achieve with conventional lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509–514

    Article  Google Scholar 

  2. Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776

    Article  Google Scholar 

  3. Pendry J B, Holden A J, Robbins D J, Stewart W J. Low frequency plasmons in thin-wire structures. Journal of Physics Condensed Matter, 1998, 10(22): 4785–4809

    Article  Google Scholar 

  4. Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    Article  Google Scholar 

  5. Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187

    Article  Google Scholar 

  6. Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    Article  Google Scholar 

  7. Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys Snell’s law. Physical Review Letters, 2003, 90(13): 137401

    Article  Google Scholar 

  8. Parazzoli C G, Greegor R B, Li K, Koltenbah B E C, Tanielian M. Experimental verification and simulation of negative index of refraction using Snell’s law. Physical Review Letters, 2003, 90(10): 107401

    Article  Google Scholar 

  9. Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    Article  Google Scholar 

  10. Pendry J B, Ramakrishna S A. Refining the perfect lens. Physica B, Condensed Matter, 2003, 338(1–4): 329–332

    Article  Google Scholar 

  11. Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537

    Article  Google Scholar 

  12. Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686

    Article  Google Scholar 

  13. Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  14. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  15. Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    Article  Google Scholar 

  16. Engheta N. Thin absorbing screens using metamaterial surfaces. In: Proceedings of IEEE Antennas and Propagation Society International Symposium. San Antonio: IEEE, 2002, 392–395

    Google Scholar 

  17. Tretyakov S A, Maslovski S I. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microwave and Optical Technology Letters, 2003, 38(3): 175–178

    Article  Google Scholar 

  18. Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104

    Article  Google Scholar 

  19. Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403

    Article  Google Scholar 

  20. Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908

    Article  Google Scholar 

  21. Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901

    Article  Google Scholar 

  22. Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151

    Article  Google Scholar 

  23. Burresi M, Diessel D, van Oosten D, Linden S, Wegener M, Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Letters, 2010, 10(7): 2480–2483

    Article  Google Scholar 

  24. Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064

    Article  Google Scholar 

  25. He Q, Sun S, Xiao S, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 2018, 6(19): 1800415

    Article  Google Scholar 

  26. Chen S, Li Z, Zhang Y, Cheng H, Tian J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Advanced Optical Materials, 2018, 6(13): 1800104

    Article  Google Scholar 

  27. Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Ping Yang, Wang S, Duan H. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 2020, 9(12): 3755–3780

    Article  Google Scholar 

  28. Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    Article  Google Scholar 

  29. Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V, Capasso F. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Letters, 2017, 17(5): 3188–3194

    Article  Google Scholar 

  30. Tseng M L, Hsiao H H, Chu C H, Chen M K, Sun G, Liu A Q, Tsai D P. Metalenses: advances and applications. Advanced Optical Materials, 2018, 6(18): 1800554

    Article  Google Scholar 

  31. Liang H, Martins A, Borges B H V, Zhou J, Martins E R, Li J, Krauss T F. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 2019, 6(12): 1461

    Article  Google Scholar 

  32. Moon S W, Kim Y, Yoon G, Rho J. Recent progress on ultrathin metalenses for flat optics. iScience, 2020, 23(12): 101877

    Article  Google Scholar 

  33. Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX, 2020, 1(1):2

    Article  Google Scholar 

  34. Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750–5755

    Article  Google Scholar 

  35. Zhou Z, Li J, Su R, Yao B, Fang H, Li K, Zhou L, Liu J, Stellinga D, Reardon C P, Krauss T F, Wang X. Efficient silicon metasurfaces for visible light. ACS Photonics, 2017, 4(3): 544–551

    Article  Google Scholar 

  36. Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 2017, 4(6): 625

    Article  Google Scholar 

  37. Lawrence N, Trevino J, Dal Negro L. Aperiodic arrays of active nanopillars for radiation engineering. Journal of Applied Physics, 2012, 111(11): 113101

    Article  Google Scholar 

  38. Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 2012, 37(23): 4940–4942

    Article  Google Scholar 

  39. Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index metasurfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11(5): 426–431

    Article  Google Scholar 

  40. Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L, Tsai D P. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012, 12(12): 6223–6229

    Article  Google Scholar 

  41. Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley E B, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Advanced Materials, 2012, 24(47): 6300–6304

    Article  Google Scholar 

  42. Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 2014, 14(1): 225–230

    Article  Google Scholar 

  43. Jiang Z H, Yun S, Lin L, Bossard J A, Werner D H, Mayer T S. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions. Scientific Reports, 2013, 3(1): 1571

    Article  Google Scholar 

  44. Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401

    Article  Google Scholar 

  45. Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399

    Article  Google Scholar 

  46. Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M, Capasso F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532

    Article  Google Scholar 

  47. Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345

    Article  Google Scholar 

  48. Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820

    Article  Google Scholar 

  49. Zhu W, Song Q, Yan L, Zhang W, Wu P C, Chin L K, Cai H, Tsai D P, Shen Z X, Deng T W, Ting S K, Gu Y, Lo G Q, Kwong D L, Yang Z C, Huang R, Liu A Q, Zheludev N. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Advanced Materials, 2015, 27(32): 4739–4743

    Article  Google Scholar 

  50. Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533

    Article  Google Scholar 

  51. Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications, 2016, 7(1): 10367

    Article  Google Scholar 

  52. Hu J, Zhao X, Lin Y, Zhu A, Zhu X, Guo P, Cao B, Wang C. All-dielectric metasurface circular dichroism waveplate. Scientific Reports, 2017, 7(1): 41893

    Article  Google Scholar 

  53. Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042

    Article  Google Scholar 

  54. Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012, 3(1): 1198

    Article  Google Scholar 

  55. Kang M, Chen J, Wang X L, Wang H T. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B, Optical Physics, 2012, 29(4): 572–576

    Article  Google Scholar 

  56. Kang M, Feng T, Wang H T, Li J. Wave front engineering from an array of thin aperture antennas. Optics Express, 2012, 20(14): 15882–15890

    Article  Google Scholar 

  57. Li G, Kang M, Chen S, Zhang S, Pun E Y, Cheah K W, Li J. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151

    Article  Google Scholar 

  58. Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302

    Article  Google Scholar 

  59. Shaltout A, Liu J, Shalaev V M, Kildishev A V. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Letters, 2014, 14(8): 4426–4431

    Article  Google Scholar 

  60. Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, de Lustrac A, Wu Q, Qiu C W, Alù A. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27(7): 1195–1200

    Article  Google Scholar 

  61. Kim J, Li Y, Miskiewicz M N, Oh C, Kudenov M W, Escuti M J. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica, 2015, 2(11): 958

    Article  Google Scholar 

  62. Li G, Chen S, Pholchai N, Reineke B, Wong P W, Pun E Y, Cheah K W, Zentgraf T, Zhang S. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials, 2015, 14(6): 607–612

    Article  Google Scholar 

  63. Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3(8): 1102–1108

    Article  Google Scholar 

  64. Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W, Cheah K W, Pun E Y, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241

    Article  Google Scholar 

  65. Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312

    Article  Google Scholar 

  66. Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823

    Article  Google Scholar 

  67. Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Science Advances, 2016, 2(5): e1501258

    Article  Google Scholar 

  68. Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194

    Article  Google Scholar 

  69. Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F. Generation of wavelength-independent subwave-length Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259

    Article  Google Scholar 

  70. Luo W, Sun S, Xu H X, He Q, Zhou L. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033

    Article  Google Scholar 

  71. Ma Z, Li Y, Li Y, Gong Y, Maier S A, Hong M. All-dielectric planar chiral metasurface with gradient geometric phase. Optics Express, 2018, 26(5): 6067–6078

    Article  Google Scholar 

  72. Xu R, Chen P, Tang J, Duan W, Ge S J, Ma L L, Wu R X, Hu W, Lu Y Q. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Physical Review Applied, 2018, 10(3): 034061

    Article  Google Scholar 

  73. Yoon G, Lee D, Nam K T, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428

    Article  Google Scholar 

  74. Ansari M A, Kim I, Lee D, Waseem M H, Zubair M, Mahmood N, Badloe T, Yerci S, Tauqeer T, Mehmood M Q, Rho J. A spin-encoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065

    Article  Google Scholar 

  75. Xu T, Du C, Wang C, Luo X. Subwavelength imaging by metallic slab lens with nanoslits. Applied Physics Letters, 2007, 91(20): 201501

    Article  Google Scholar 

  76. Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A. Subwave-length-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 2015, 6(1): 7069

    Article  Google Scholar 

  77. Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 2016, 16(11): 7229–7234

    Article  Google Scholar 

  78. Sun W, He Q, Sun S, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light, Science & Applications, 2016, 5(1): e16003

    Article  Google Scholar 

  79. Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Optics Letters, 1998, 23(14): 1081–1083

    Article  Google Scholar 

  80. Schonbrun E, Seo K, Crozier K B. Reconfigurable imaging systems using elliptical nanowires. Nano Letters, 2011, 11(10): 4299–4303

    Article  Google Scholar 

  81. West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R. All-dielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22(21): 26212–26221

    Article  Google Scholar 

  82. Zhang Q, Li M, Liao T, Cui X. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Optics Communications, 2018, 411: 93–100

    Article  Google Scholar 

  83. Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 2012, 12(12): 6328–6333

    Article  Google Scholar 

  84. Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423

    Article  Google Scholar 

  85. Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 2012, 12(9): 4932–4936

    Article  Google Scholar 

  86. Ni X, Ishii S, Kildishev A V, Shalaev V M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light, Science & Applications, 2013, 2(4): e72

    Article  Google Scholar 

  87. Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901

    Article  Google Scholar 

  88. Wang S, Wu P C, Su V C, Lai Y C, Hung Chu C, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P. Broadband achromatic optical metasurface devices. Nature Communications, 2017, 8(1): 187

    Article  Google Scholar 

  89. Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220–226

    Article  Google Scholar 

  90. Chen W T, Zhu A Y, Sisler J, Huang Y W, Yousef K M A, Lee E, Qiu C W, Capasso F. Broadband achromatic metasurfacerefractive optics. Nano Letters, 2018, 18(12): 7801–7808

    Article  Google Scholar 

  91. Li S, Li X, Wang G, Liu S, Zhang L, Zeng C, Wang L, Sun Q, Zhao W, Zhang W. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface. Advanced Optical Materials, 2019, 7(5): 1801365

    Article  Google Scholar 

  92. Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688

    Article  Google Scholar 

  93. Chen W T, Török P, Foreman M R, Liao C Y, Tsai W Y, Wu P R, Tsai D P. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 2016, 27(22): 224002

    Article  Google Scholar 

  94. Yuan Y, Sun S, Chen Y, Zhang K, Ding X, Ratni B, Wu Q, Burokur S N, Qiu C W. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Advanced Science, 2020, 7(18): 2001437

    Article  Google Scholar 

  95. Zhang J, Liang Y, Wu S, Xu W, Zheng S, Zhang L. Single-layer dielectric metasurface with giant chiroptical effects combining geometric and propagation phase. Optics Communications, 2021, 478: 126405

    Article  Google Scholar 

  96. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943

    Article  Google Scholar 

  97. Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Optics Express, 2016, 24(16): 18468–18477

    Article  Google Scholar 

  98. Liu Z, Li Z, Liu Z, Li J, Cheng H, Yu P, Liu W, Tang C, Gu C, Li J, Chen S, Tian J. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces. Advanced Functional Materials, 2015, 25(34): 5428–5434

    Article  Google Scholar 

  99. Nagasaki Y, Suzuki M, Takahara J. All-dielectric dual-color pixel with subwavelength resolution. Nano Letters, 2017, 17(12): 7500–7506

    Article  Google Scholar 

  100. Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, Liu L, Yu X, Zhou J, Krauss T F, Li J. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Letters, 2018, 18(7): 4460–4466

    Article  Google Scholar 

  101. Liu C H, Zheng J, Colburn S, Fryett T K, Chen Y, Xu X, Majumdar A. Ultrathin van der Waals metalenses. Nano Letters, 2018, 18(11): 6961–6966

    Article  Google Scholar 

  102. Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F. Achromatic metasurface lens at telecommunication wavelengths. Nano Letters, 2015, 15(8): 5358–5362

    Article  Google Scholar 

  103. Shi Z, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y, Chen W T, Sanjeev V, Ding Z W, Tamagnone M, Chaudhary K, Devlin R C, Qiu C W, Capasso F. Single-layer metasurface with controllable multiwavelength functions. Nano Letters, 2018, 18(4): 2420–2427

    Article  Google Scholar 

  104. Shrestha S, Overvig A C, Lu M, Stein A, Yu N. Broadband achromatic dielectric metalenses. Light, Science & Applications, 2018, 7(1): 85

    Article  Google Scholar 

  105. Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W. A broadband achromatic metalens array for integral imaging in the visible. Light, Science & Applications, 2019, 8(1): 67

    Article  Google Scholar 

  106. Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P. A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018, 13(3): 227–232

    Article  Google Scholar 

  107. Lin R J, Su V C, Wang S, Chen M K, Chung T L, Chen Y H, Kuo H Y, Chen J W, Chen J, Huang Y T, Wang J H, Chu C H, Wu P C, Li T, Wang Z, Zhu S, Tsai D P. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 2019, 14(3): 227–231

    Article  Google Scholar 

  108. Ye M, Ray V, Yi Y S. Achromatic flat subwavelength grating lens over whole visible bandwidths. IEEE Photonics Technology Letters, 2018, 30(10): 955–958

    Article  Google Scholar 

  109. Zhang Z, Cui Z, Liu Y, Wang S, Staude I, Yang Z, Zhao M. Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared spectrum. OSA Continuum, 2018, 1(3): 882–890

    Article  Google Scholar 

  110. Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 2019, 10(1): 355

    Article  Google Scholar 

  111. Cheng Q, Ma M, Yu D, Shen Z, Xie J, Wang J, Xu N, Guo H, Hu W, Wang S, Li T, Zhuang S. Broadband achromatic metalens in terahertz regime. Science Bulletin, 2019, 64(20): 1525–1531

    Article  Google Scholar 

  112. Zhao F, Jiang X, Li S, Chen H, Liang G, Wen Z, Zhang Z, Chen G. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. Journal of Physics D, Applied Physics, 2019, 52(50): 505110

    Article  Google Scholar 

  113. Chung H, Miller O D. High-NA achromatic metalenses by inverse design. Optics Express, 2020, 28(5): 6945–6965

    Article  Google Scholar 

  114. Ou K, Yu F, Li G, Wang W, Miroshnichenko A E, Huang L, Wang P, Li T, Li Z, Chen X, Lu W. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6(37): eabc0711

    Article  Google Scholar 

  115. Sisler J, Chen WT, Zhu AY, Capasso F. Controlling dispersion in multifunctional metasurfaces. APL Photonics, 2020, 5(5): 056107

    Article  Google Scholar 

  116. Zhao F, Li Z, Dai X, Liao X, Li S, Cao J, Shang Z, Zhang Z, Liang G, Chen G, Li H, Wen Z. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens. Advanced Optical Materials, 2020, 8(21): 2000842

    Article  Google Scholar 

  117. Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163: 7–20

    Article  Google Scholar 

  118. Zuo R, Liu W, Cheng H, Chen S, Tian J. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Advanced Optical Materials, 2018, 6(21): 1800795

    Article  Google Scholar 

  119. Li Z, Zhang T, Wang Y, Kong W, Zhang J, Huang Y, Wang C, Li X, Pu M, Luo X. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser & Photonics Reviews, 2018, 12(10): 1800064

    Article  Google Scholar 

  120. Lin R, Li X. Multifocal metalens based on multilayer Pancharatnam-Berry phase elements architecture. Optics Letters, 2019, 44(11): 2819

    Article  Google Scholar 

  121. Gao S, Park C S, Zhou C, Lee S S, Choi D Y. Twofold polarization-selective all-dielectric Trifoci metalens for linearly polarized visible light. Advanced Optical Materials, 2019, 7(21): 1900883

    Article  Google Scholar 

  122. Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Letters, 2016, 16(7): 4595–4600

    Article  Google Scholar 

  123. Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S. A multifoci metalens with polarization-rotated focal points. Laser & Photonics Reviews, 2019, 13(12): 1900182

    Article  Google Scholar 

  124. Aiello M D, Backer A S, Sapon A J, Smits J, Perreault J D, Llull P, Acosta V M. Achromatic varifocal metalens for the visible spectrum. ACS Photonics, 2019, 6(10): 2432–2440

    Article  Google Scholar 

  125. Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A. MEMS-tunable dielectric metasurface lens. Nature Communications, 2018, 9(1): 812

    Article  Google Scholar 

  126. Yilmaz N, Ozdemir A, Ozer A, Kurt H. Rotationally tunable polarization-insensitive single and multifocal metasurface. Journal of Optics, 2019, 21(4): 045105

    Article  Google Scholar 

  127. Wei Y, Wang Y, Feng X, Xiao S, Wang Z, Hu T, Hu M, Song J, Wegener M, Zhao M, Xia J, Yang Z. Compact optical polarization-insensitive zoom metalens doublet. Advanced Optical Materials, 2020, 8(13): 2000142

    Article  Google Scholar 

  128. Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628

    Article  Google Scholar 

  129. Kwon H, Arbabi E, Kamali S M, Faraji-Dana M, Faraon A. Singleshot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics, 2020, 14(2): 109–114

    Article  Google Scholar 

  130. Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798

    Article  Google Scholar 

  131. Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B, Chen M K, Li H, Fang B, Chen J, Kuo H Y, Wang S, Tsai D P, Zhu S, Li T. Spectral tomographic imaging with aplanatic metalens. Light, Science & Applications, 2019, 8(1): 99

    Article  Google Scholar 

  132. Li L, Liu Z, Ren X, Wang S, Su V C, Chen M K, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368(6498): 1487–1490

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFC2007102), the National Natural Science Foundation of China (Grant No. 12074444), and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011184), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haowen Liang.

Additional information

Xiao Fu is a postdoctoral fellow led by Prof. Juntao Li at Sun Yat-sen University, China. She obtained her B.E. degree in Photovoltaic and Renewable Energy from University of New South Wales, Australia, and her Ph.D. degree in the field of perovskite solar cells from Australian National University, Australia. Her research interests are optoelectronic devices, metasurfaces, and fabrication of nanostructures.

Haowen Liang is an associate professor at Sun Yat-sen University, China. He received his Ph.D. degree in the field of optical engineering from Sun Yat-sen University, China. His research interests are advanced imaging and displays achieved by optical field manipulation.

Juntao Li is a professor at Sun Yat-sen University, China. He got his Ph.D. degree in the field of nanophotonic from Sun Yatsen University, China. His research interests are the photon controlling by the nanophotonic structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Liang, H. & Li, J. Metalenses: from design principles to functional applications. Front. Optoelectron. 14, 170–186 (2021). https://doi.org/10.1007/s12200-021-1201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-021-1201-9

Keywords

Navigation