Skip to main content
Log in

Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the firsttimethatFe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311

    Google Scholar 

  2. Kobtsev S, Kukarin S, Smirnov S, Turitsyn S, Latkin A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713

    Google Scholar 

  3. Tang M, Tian X, Shum P, Fu S, Dong H, Gong Y. Four-wave mixing assisted self-stable 4 × 10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730

    Google Scholar 

  4. Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811

    Google Scholar 

  5. Greer E J, Smith K. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741

    Google Scholar 

  6. Cundiff S, Collings B, Knox W. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21

    Google Scholar 

  7. Collings B C, Bergman K, Knox W H. Stable multigigahertz pulsetrain formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125

    Google Scholar 

  8. Moenster M, Glas P, Steinmeyer G, Iliew R, Lebedev N, Wedell R, Bretschneider M. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677

    Google Scholar 

  9. Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W, Chen J. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214–229

    Google Scholar 

  10. Yang T, Lin H, Jia B. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22

    Google Scholar 

  11. Choi S, Jeong H, Hong B, Rotermund F, Yeom D. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101

    Google Scholar 

  12. Liu X, Cui Y, Han D, Yao X, Sun Z. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101

    Google Scholar 

  13. Haiml M, Grange R, Keller U. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339

    Google Scholar 

  14. Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M, Set S Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29 (14): 1581–1583

    Google Scholar 

  15. Liu H H, Chow K K. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713

    Google Scholar 

  16. Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247

    Google Scholar 

  17. Li D D, Zhu J W, Jiang M, Li D, Wu H, Han J, Sun Z P, Ren Z Y. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203

    Google Scholar 

  18. Wang Y R, Zhang B T, Yang H, Hou J, Su X C, Sun Z P, He J L. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931

    Google Scholar 

  19. Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617–17622

    Google Scholar 

  20. Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y, Chen S, Guo C, Hu J. A practical topological insulator saturable absorber for mode-locked fiber laser. Scientific Reports, 2015, 5(1): 8690

    Google Scholar 

  21. Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C, Zhang H, Zheng J, Zhao J. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43

    Google Scholar 

  22. Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35 (11): 1800341

    Google Scholar 

  23. Hui Z, Xu W, Li X, Guo P, Zhang Y, Liu J. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051

    Google Scholar 

  24. Wu M, Li X, Wu K, Wu D, Dai S, Xu T, Nie Q. All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157

    Google Scholar 

  25. Liu W, Pang L, Han H, Bi K, Lei M, Wei Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9 (18): 5806–5811

    Google Scholar 

  26. Woodward R I, Howe R C T, Hu G, Torrisi F, Zhang M, Hasan T, Kelleher E J R. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30

    Google Scholar 

  27. Feng J, Li X, Shi Z, Zheng C, Li X, Leng D, Wang Y, Liu J, Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel highperformance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762

  28. Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P, Qian L. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 µm to 2.7 µm wavelength. Laser Physics Letters, 2016, 13(4): 045801

    Google Scholar 

  29. Wei R, Wang M, Zhu Z, Lai W, Yan P, Ruan S, Wang J, Sun Z, Hasan T. High-power femtosecond pulse generation from an allfiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208

    Google Scholar 

  30. Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S C, Tang D Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106

    Google Scholar 

  31. Fang J, Yang Z, long S, Wu Z, Zhao X, Liang F, Jiang Z, Chen Z. High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711

    Google Scholar 

  32. Mao D, Cui X, Zhang W, Li M, Feng T, Du B, Lu H, Zhao J. Q-switched fiber laser based on saturable absorption of ferroferricoxide nanoparticles. Photonics Research, 2017, 5(1): 52

    Google Scholar 

  33. Bai X, Mou C, Xu L, Wang S, Pu S, Zeng X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701

    Google Scholar 

  34. Chan C T. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3

    MathSciNet  Google Scholar 

  35. Li H, Ma B. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49

    MathSciNet  Google Scholar 

  36. Xing G, Jiang J, Ying J Y, Ji W. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190

    Google Scholar 

  37. Li N, Jia H, Liu J X, Cui L H, Jia Z X, Kang Z, Qin G S, Qin W P. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102

    Google Scholar 

  38. Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 µm. Photonics Research, 2020, 8(1): 70–77

    Google Scholar 

  39. Liu J S, Li X H, Qyyum A, Guo Y X, Chai T, Xu H, Jiang J. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065–1072

    Google Scholar 

  40. El-Diasty F, El-Sayed H M, El-Hosiny F I, Ismail M I M. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34

    Google Scholar 

  41. Tang D Y, Zhao L M, Zhao B, Liu A Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816

    Google Scholar 

  42. Guo B, Yao Y, Tian J J, Zhao Y F, Liu S, Li M, Quan M R. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704

    Google Scholar 

  43. Zhang H, Tang D, Zhao L, Wu X. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530

    Google Scholar 

  44. Li X, Liu X, Hu X, Wang L, Lu H, Wang Y, Zhao W. Long-cavity passively mode-locked fiber ring laser with high-energy rectangularshape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251

    Google Scholar 

  45. Chang W, Ankiewicz A, Soto-Crespo J M, Akhmediev N. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972

    Google Scholar 

  46. Wang X, Xia Q, Gu B A. A 1.9 µm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183

    Google Scholar 

  47. Bravo-Huerta E, Durán-Sánchez M, Álvarez-Tamayo R I, Santiago-Hernández H, Bello-Jiménez M, Posada-Ramírez B, Ibarra-Escamilla B, Pottiez O, Kuzin E A. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359

    Google Scholar 

  48. Wang S K, Ning Q Y, Luo A P, Lin Z B, Luo Z C, Xu W C. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser. Optics Express, 2013, 21(2): 2402–2407

    Google Scholar 

  49. Luo Z C, Cao W J, Lin Z B, Cai Z R, Luo A P, Xu W C. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779

    Google Scholar 

  50. Liu L, Liao J H, Ning Q Y, Yu W, Luo A P, Xu S H, Luo Z C, Yang Z M, Xu W C. Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092

    Google Scholar 

  51. Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z, Gao C, Li C, Shen D. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507

    Google Scholar 

  52. Jeong Y, Vazquez-Zuniga L A, Lee S, Kwon Y. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592

    Google Scholar 

  53. Li X, Wang Y, Zhang W, Zhao W. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 61605106), Funded projects for the Academic Leader and Academic Backbones, Shaanxi Normal University (No. 18QNGG006), Shaanxi International Cooperation Project (No. 2020KW-005), Starting Grants of Shaanxi Normal University (Nos. 1112010209 and 1110010717), Open Research Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (No. SKLST201809), Fundamental Research Funds for the Central Universities (Nos. GK201802006 and 2018CSLY005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Li or Cunxiao Gao.

Additional information

Disclosures

The authors declare no conflicts of interest.

Xiaohui Li received a B.S. degree in Science from North-West University, Xi’an, China in 2006 and a Ph.D. degree from State Key Laboratory of Transient Optics and Photonics, Xi’ an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China in 2012. He is with School of Physics and Information Technology, Shaanxi Normal University, where he is currently a researcher. His current research interests include passively mode-locked fiber laser, high-power fiber laser, and solitons in fiber.

Jiajun Peng received a B.S. degree in Computer Science from Zhengzhou University, Zhengzhou, China in 2019. He is currently working toward an M.S. degree in Physics at School of Optical Engineering, Shaanxi Normal University, Xi’an, China. His current research interests include passively mode-locked fiber laser, high-power fiber laser, and solitons in fiber.

Jishu Liu received a Master’s degree in Engineering from Shaanxi Normal University, Xi’an, China in 2020. His current research interests include passively mode-locked fiber laser and solitons in fiber.

Tianci Feng received a B.S. degree in Science from Xianyang Normal University, China in 2017 and a Master’s degree from Shaanxi Normal University, China in 2020. He majored in optics, and his current research interests include passively mode-locked fiber laser and 2D materials.

Cunxiao Gao received an M.S. degree in Optoelectronic Technology from North-West University, Xi’an, China in 2002 and a Ph.D. degree in Optics from Graduate University of Chinese Academy of Sciences, Beijing, China. His research interests include fiber laser, fiber amplifier, and fiber nonlinear optics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Peng, J., Liu, R. et al. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser. Front. Optoelectron. 13, 149–155 (2020). https://doi.org/10.1007/s12200-020-1057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1057-4

Keywords

Navigation