Skip to main content
Log in

Review on partially coherent vortex beams

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Ever since vortex beams were proposed, they are known for owning phase singularity and carrying orbital angular momentum (OAM). In the past decades, coherent optics developed rapidly. Vortex beams have been extended from fully coherent light to partially coherent light, from scalar light to vector light, from integral topological charge (TC) to fractional TC. Partially coherent vortex beams have attracted tremendous interest due to their hidden correlation singularity and unique propagation properties (e.g., beam shaping, beam rotation and self-reconstruction). Based on the sufficient condition for devising a genuine correlation function of partially coherent beam, partially coherent vortex beams with nonconventional correlation functions (i.e., non-Gaussian correlated Schell-model functions) were introduced recently. This timely review summarizes basic concepts, theoretical models, generation and propagation of partially coherent vortex beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nye J, Berry M. Dislocations in wave trains. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1974, 336(1605): 165–190

    MathSciNet  MATH  Google Scholar 

  2. Soskin M, Vasnetsov M. Singular optics. Progress in Optics, 2001, 42(4): 219–276

    Google Scholar 

  3. Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230

    Google Scholar 

  4. Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M. Topological nature of optical bound states in the continuum. Physical Review Letters, 2014, 113(25): 257401

    Google Scholar 

  5. Flossmann F, Schwarz U, Maier M. Propagation dynamics of optical vortices in Laguerre-Gaussian beams. Optics Communications, 2005, 250(4–6): 218–230

    Google Scholar 

  6. Zhu K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Optics Express, 2008, 16(26): 21315–21320

    Google Scholar 

  7. Schwarz U, Sogomonian S, Maier M. Propagation dynamics of phase dislocations embedded in a Bessel light beam. Optics Communications, 2002, 208(4–6): 255–262

    Google Scholar 

  8. Orlov S, Regelskis K, Smilgevičius V, Stabinis A. Propagation of Bessel beams carrying optical vortices. Optics Communications, 2002, 209(1–3): 155–165

    Google Scholar 

  9. Yang Y, Dong Y, Zhao C, Cai Y. Generation and propagation of an anomalous vortex beam. Optics Letters, 2013, 38(24): 5418–5421

    Google Scholar 

  10. Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam. Optics Letters, 2015, 40(4): 597–600

    Google Scholar 

  11. Li P, Zhang Y, Liu S, Ma C, Han L, Cheng H, Zhao J. Generation of perfect vectorial vortex beams. Optics Letters, 2016, 41(10): 2205–2208

    Google Scholar 

  12. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901

    Google Scholar 

  13. Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, 99(8): 087701

    Google Scholar 

  14. Grier D G. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816

    Google Scholar 

  15. O’Neil A T, Padgett M J. Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers. Optics Communications, 2001, 193(1–6): 45–50

    Google Scholar 

  16. Ng J, Lin Z, Chan C T. Theory of optical trapping by an optical vortex beam. Physical Review Letters, 2010, 104(10): 103601

    Google Scholar 

  17. Wang X, Rui G, Gong L, Gu B, Cui Y. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Optics Express, 2016, 24(21): 24143–24152

    Google Scholar 

  18. Chen J, Wan C, Kong L J, Zhan Q. Tightly focused optical field with controllable photonic spin orientation. Optics Express, 2017, 25(16): 19517–19528

    Google Scholar 

  19. Molina-Terriza G, Torres J P, Torner L. Twisted photons. Nature Physics, 2007, 3(5): 305–310

    Google Scholar 

  20. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548

    Google Scholar 

  21. Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Physical Review Letters, 2003, 91(22): 227902

    Google Scholar 

  22. Gu Y, Gbur G. Measurement of atmospheric turbulence strength by vortex beam. Optics Communications, 2010, 283(7): 1209–1212

    Google Scholar 

  23. Li X, Tai Y, Zhang L, Li H, Li L. Characterization of dynamic random process using optical vortex metrology. Applied Physics B, Lasers and Optics, 2014, 116(4): 901–909

    Google Scholar 

  24. Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the rayleigh criterion limit with optical vortices. Physical Review Letters, 2006, 97(16): 163903

    Google Scholar 

  25. Yu W, Ji Z, Dong D, Yang X, Xiao Y, Gong Q, Xi P, Shi K. Superresolution deep imaging with hollow Bessel beam STED microscopy. Laser & Photonics Reviews, 2016, 10(1): 147–152

    Google Scholar 

  26. Beijersbergen M W, Allen L, Van der Veen H, Woerdman J. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 1993, 96(1–3): 123–132

    Google Scholar 

  27. Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon. Optics Communications, 2000, 177(1–6): 297–301

    Google Scholar 

  28. Beijersbergen M, Coerwinkel R, Kristensen M, Woerdman J. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5–6): 321–327

    Google Scholar 

  29. Heckenberg N R, McDuff R, Smith C P, White A G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223

    Google Scholar 

  30. Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N, Hara T. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(7): 1642–1651

    Google Scholar 

  31. Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905

    Google Scholar 

  32. Chen P, Ji W, Wei B Y, Hu W, Chigrinov V, Lu Y Q. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Applied Physics Letters, 2015, 107(24): 241102

    Google Scholar 

  33. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of radially and azimuthally polarized beams. Optics Letters, 2007, 32(11): 1468–1470

    Google Scholar 

  34. Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, 2016, 10(5): 327–332

    Google Scholar 

  35. Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

    Google Scholar 

  36. Fang X, Yang G, Wei D, Wei D, Ni R, Ji W, Zhang Y, Hu X, Hu W, Lu Y Q, Zhu S N, Xiao M. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal. Optics Letters, 2016, 41(6): 1169–1172

    Google Scholar 

  37. Wu Y, Ni R, Xu Z, Wu Y, Fang X, Wei D, Hu X, Zhang Y, Xiao M, Zhu S. Tunable third harmonic generation of vortex beams in an optical superlattice. Optics Express, 2017, 25(25): 30820–30826

    Google Scholar 

  38. Leach J, Keen S, Padgett M J, Saunter C, Love G D. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Optics Express, 2006, 14(25): 11919–11924

    Google Scholar 

  39. Berkhout G C, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Physical Review Letters, 2008, 101(10): 100801

    Google Scholar 

  40. Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams. Optics Letters, 2006, 31(7): 999–1001

    Google Scholar 

  41. Hickmann J M, Fonseca E J, Soares W C, Chávez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 2010, 105(5): 053904

    Google Scholar 

  42. de Araujo L E, Anderson M E. Measuring vortex charge with a triangular aperture. Optics Letters, 2011, 36(6): 787–789

    Google Scholar 

  43. Guo C S, Yue S J, Wei G X. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Applied Physics Letters, 2009, 94(23): 231104

    Google Scholar 

  44. Vinu R V, Singh R K. Determining helicity and topological structure of coherent vortex beam from laser speckle. Applied Physics Letters, 2016, 109(11): 111108

    Google Scholar 

  45. Prabhakar S, Kumar A, Banerji J, Singh R P. Revealing the order of a vortex through its intensity record. Optics Letters, 2011, 36(22): 4398–4400

    Google Scholar 

  46. Zhao P, Li S, Feng X, Cui K, Liu F, Zhang W, Huang Y. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Optics Letters, 2017, 42(6): 1080–1083

    Google Scholar 

  47. Dudley A, Litvin I A, Forbes A. Quantitative measurement of the orbital angular momentum density of light. Applied Optics, 2012, 51(7): 823–833

    Google Scholar 

  48. Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light, Science & Applications, 2017, 6(4): e16251

    Google Scholar 

  49. Basistiy I, Soskin M, Vasnetsov M. Optical wavefront dislocations and their properties. Optics Communications, 1995, 119(5–6): 604–612

    Google Scholar 

  50. Lee W, Yuan X C, Dholakia K. Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step. Optics Communications, 2004, 239(1–3): 129–135

    Google Scholar 

  51. Berry M. Optical vortices evolving from helicoidal integer and fractional phase steps. Journal of Optics A, Pure and Applied Optics, 2004, 6(2): 259–268

    Google Scholar 

  52. Gbur G. Fractional vortex Hilbert’s hotel. Optica, 2016, 3(3): 222–225

    Google Scholar 

  53. Tao S H, Lee W M, Yuan X C. Dynamic optical manipulation with a higher-order fractional bessel beam generated from a spatial light modulator. Optics Letters, 2003, 28(20): 1867–1869

    Google Scholar 

  54. Fang Y, Lu Q, Wang X, Zhang W, Chen L. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale. Physical Review A, 2017, 95(2): 023821

    Google Scholar 

  55. Molchan M A, Doktorov E V, Vlasov R A. Propagation of vector fractional charge Laguerre-Gaussian light beams in the thermally nonlinear moving atmosphere. Optics Letters, 2010, 35(5): 670–672

    Google Scholar 

  56. Vasylkiv Y, Skab I, Vlokh R. Crossover regime of optical vortices generation via electro-optic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(9): 1936–1945

    Google Scholar 

  57. Yang Y, Zhu X, Zeng J, Lu X, Zhao C, Cai Y. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 2018, 7(3): 677–682

    Google Scholar 

  58. Oemrawsingh S S R, de Jong J A, Ma X, Aiello A, Eliel E R, ’t Hooft G W, Woerdman J P. High-dimensional mode analyzers for spatial quantum entanglement. Physical Review A, 2006, 73(3): 032339

    Google Scholar 

  59. Guo C S, Yu Y N, Hong Z. Optical sorting using an array of optical vortices with fractional topological charge. Optics Communications, 2010, 283(9): 1889–1893

    Google Scholar 

  60. Tao S, Yuan X C, Lin J, Peng X, Niu H. Fractional optical vortex beam induced rotation of particles. Optics Express, 2005, 13(20): 7726–7731

    Google Scholar 

  61. Situ G, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2009, 26(8): 1788–1797

    Google Scholar 

  62. Strohaber J, Boran Y, Sayrac M, Johnson L, Zhu F, Kolomenskii A, Schuessler H. Nonlinear mixing of optical vortices with fractional topological charge in Raman sideband generation. Journal of Optics, 2017, 19(1): 015607

    Google Scholar 

  63. Ni R, Niu Y, Du L, Hu X, Zhang Y, Zhu S. Topological charge transfer in frequency doubling of fractional orbital angular momentum state. Applied Physics Letters, 2016, 109(15): 151103

    Google Scholar 

  64. Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7nd ed. Cambridge: Cambridge University Press, 1999

    MATH  Google Scholar 

  65. Wolf E. New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources. Journal of the Optical Society of America, 1982, 72(3): 343–351

    MathSciNet  Google Scholar 

  66. Wolf E. New theory of partial coherence in the space-frequency domain. Part II: steady-state fields and higher-order correlations. Journal of the Optical Society of America A, Optics and Image Science, 1986, 3(1): 76–85

    Google Scholar 

  67. Wolf E. Invariance of the spectrum of light on propagation. Physical Review Letters, 1986, 56(13): 1370–1372

    Google Scholar 

  68. Gori F. Collett-Wolf sources and multimode lasers. Optics Communications, 1980, 34(3): 301–305

    Google Scholar 

  69. Carter W H, Wolf E. Coherence and radiometry with quasihomogeneous planar sources. Journal of the Optical Society of America, 1977, 67(6): 785–796

    Google Scholar 

  70. Gori F. Mode propagation of the field generated by Collett-Wolf Schell-model sources. Optics Communications, 1983, 46(3–4): 149–154

    Google Scholar 

  71. Gori F, Guattari G, Padovani C. Modal expansion for J o-correlated Schell-model sources. Optics Communications, 1987, 64(4): 311–316

    Google Scholar 

  72. Gori F, Guattari G, Palma C, Padovani C. Observation of optical redshifts and blueshifts produced by source correlations. Optics Communications, 1988, 67(1): 1–4

    Google Scholar 

  73. Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2002, 19(9): 1794–1802

    Google Scholar 

  74. Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2003, 20(5): 856–866

    Google Scholar 

  75. Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Physical Review Letters, 1984, 53(11): 1057–1060

    Google Scholar 

  76. Beléndez A, Carretero L, Fimia A. The use of partially coherent light to reduce the efficiency of silver halide noise gratings. Optics Communications, 1993, 98(4–6): 236–240

    Google Scholar 

  77. Cai Y, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation. Physical Review E, 2005, 71(5): 056607

    Google Scholar 

  78. Zhao C, Cai Y, Lu X, Eyyuboğlu H T. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Optics Express, 2009, 17(3): 1753–1765

    Google Scholar 

  79. Zhang J F, Wang Z Y, Cheng B, Wang Q Y, Wu B, Shen X X, Zheng L L, Xu Y F, Lin Q. Atom cooling by partially spatially coherent lasers. Physical Review A., 2013, 88(2): 023416

    Google Scholar 

  80. Zubairy M S, McIver J K. Second-harmonic generation by a partially coherent beam. Physical Review A, 1987, 36(1): 202–206

    Google Scholar 

  81. Cai Y, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam. Optics Express, 2007, 15(23): 15480–15492

    Google Scholar 

  82. van Dijk T, Fischer D G, Visser T D, Wolf E. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Physical Review Letters, 2010, 104(17): 173902

    Google Scholar 

  83. Ding C, Cai Y, Korotkova O, Zhang Y, Pan L. Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse. Optics Letters, 2011, 36(4): 517–519

    Google Scholar 

  84. Kermisch D. Partially coherent image processing by laser scanning. Journal of the Optical Society of America, 1975, 65(8): 887–891

    Google Scholar 

  85. Gori F, Santarsiero M, Borghi R, Vicalvi S. Partially coherent sources with helicoidal modes. Optica Acta, 1998, 45(3): 539–554

    Google Scholar 

  86. Gbur G, Visser T D, Wolf E. ‘Hidden’ singularities in partially coherent wavefields. Journal of Optics A Pure & Applied Optics, 2004, 6(5): S239–S242

    Google Scholar 

  87. Visser T D, Gbur G, Wolf E. Effect of the state of coherence on the three-dimensional spectral intensity distribution near focus. Optics Communications, 2002, 213(1–3): 13–19

    Google Scholar 

  88. Bouchal Z, Perina J. Non-diffracting beams with controlled spatial coherence. Optica Acta, 2002, 49(10): 1673–1689

    Google Scholar 

  89. Gbur G, Visser T D. Coherence vortices in partially coherent beams. Optics Communications, 2003, 222(1–6): 117–125

    Google Scholar 

  90. Ponomarenko S A. A class of partially coherent beams carrying optical vortices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(1): 150–156

    Google Scholar 

  91. Maleev I D, Palacios D M, Marathay A S, Swartzlander G AJr. Spatial correlation vortices in partially coherent light: theory. Journal of the Optical Society of America B, Optical Physics, 2004, 21(11): 1895–1900

    Google Scholar 

  92. Jeng C C, Shih M F, Motzek K, Kivshar Y. Partially incoherent optical vortices in self-focusing nonlinear media. Physical Review Letters, 2004, 92(4): 043904

    Google Scholar 

  93. van Dijk T, Visser T D. Evolution of singularities in a partially coherent vortex beam. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(4): 741–744

    Google Scholar 

  94. Wang F, Zhu S, Cai Y. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Optics Letters, 2011, 36(16): 3281–3283

    Google Scholar 

  95. Yang Y, Chen M, Mazilu M, Mourka A, Liu Y D, Dholakia K. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity. New Journal of Physics, 2013, 15(11): 113053

    Google Scholar 

  96. Qin Z, Tao R, Zhou P, Xu X, Liu Z. Propagation of partially coherent Bessel-Gaussian beams carrying optical vortices in non-Kolmogorov turbulence. Optics & Laser Technology, 2014, 56(33): 182–188

    Google Scholar 

  97. Zhang Z, Fan H, Xu H F, Qu J, Huang W. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic. Journal of Optics, 2015, 17(6): 065611

    Google Scholar 

  98. Singh R K, Sharma A M, Senthilkumaran P. Vortex array embedded in a partially coherent beam. Optics Letters, 2015, 40(12): 2751–2754

    Google Scholar 

  99. Liu D, Wang Y, Yin H. Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Applied Optics, 2015, 54(35): 10510–10516

    Google Scholar 

  100. Cheng M, Guo L, Li J, Huang Q, Cheng Q, Zhang D. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean. Applied Optics, 2016, 55(17): 4642–4648

    Google Scholar 

  101. Zhang Y, Ma D, Zhou Z, Yuan X. Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere. Applied Optics, 2017, 56(10): 2922–2926

    Google Scholar 

  102. Liu X, Peng X, Liu L, Wu G, Zhao C, Wang F, Cai Y. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Applied Physics Letters, 2017, 110(18): 181104

    Google Scholar 

  103. Stahl C S D, Gbur G. Partially coherent vortex beams of arbitrary order. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2017, 34(10): 1793–1799

    Google Scholar 

  104. Liu D, Yin H, Wang G, Wang Y. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence. Applied Optics, 2017, 56(31): 8785–8792

    Google Scholar 

  105. Ostrovsky A S, García-García J, Rickenstorff-Parrao C, Olvera-Santamaría M A. Partially coherent diffraction-free vortex beams with a Bessel-mode structure. Optics Letters, 2017, 42(24): 5182–5185

    Google Scholar 

  106. Gori F, Santarsiero M. Devising genuine spatial correlation functions. Optics Letters, 2007, 32(24): 3531–3533

    Google Scholar 

  107. Gori F, Ramirezsanchez V, Santarsiero M, Shirai T. On genuine cross-spectral density matrices. Journal of Optics A, 2009, 11(8): 085706

    Google Scholar 

  108. Chen Y, Liu L, Wang F, Zhao C, Cai Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Optics Express, 2014, 22(11): 13975–13987

    Google Scholar 

  109. Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2012, 29(10): 2154–2158

    Google Scholar 

  110. Lajunen H, Saastamoinen T. Non-uniformly correlated partially coherent pulses. Optics Express, 2013, 21(1): 190–195

    Google Scholar 

  111. Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Optics Letters, 2012, 37(14): 2970–2972

    Google Scholar 

  112. Zhang Y, Liu L, Zhao C, Cai Y. Multi-Gaussian Schell-model vortex beam. Physics Letters A, 2014, 378(9): 750–754

    MathSciNet  MATH  Google Scholar 

  113. Chen Y, Wang F, Zhao C, Cai Y. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Optics Express, 2014, 22(5): 5826–5838

    Google Scholar 

  114. Liu H, Chen D, Xia J, Lü Y, Zhang L, Pu X. Influences of uniaxial crystal on partially coherent multi-Gaussian Schell-model vortex beams. Optical Engineering (Redondo Beach, Calif.), 2016, 55(11): 116101

    Google Scholar 

  115. Liu X, Wang F, Liu L, Zhao C, Cai Y. Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(11): 2058–2065

    Google Scholar 

  116. Zhang Y, Pan L, Cai Y. Propagation of Correlation Singularities of a Partially Coherent Laguerre-Gaussian Electromagnetic Beam in a Uniaxial Crystal. IEEE Photonics Journal, 2017, 9(4): 1–13

    Google Scholar 

  117. Guo L, Chen Y, Liu X, Liu L, Cai Y. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam. Optics Express, 2016, 24(13): 13714–13728

    Google Scholar 

  118. Zhao C, Cai Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Optics Letters, 2011, 36(12): 2251–2253

    Google Scholar 

  119. Liu X, Shen Y, Liu L, Wang F, Cai Y. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Optics Letters, 2013, 38(24): 5323–5326

    Google Scholar 

  120. Zeng J, Liu X, Wang F, Zhao C, Cai Y. Partially coherent fractional vortex beam. Optics Express, 2018, 26(21): 26830–26844

    Google Scholar 

  121. Perez-Garcia B, Yepiz A, Hernandez-Aranda R I, Forbes A, Swartzlander G A. Digital generation of partially coherent vortex beams. Optics Letters, 2016, 41(15): 3471–3474

    Google Scholar 

  122. Liu R, Wang F, Chen D, Wang Y, Zhou Y, Gao H, Zhang P, Li F. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment. Applied Physics Letters, 2016, 108(5): 051107

    Google Scholar 

  123. Pires H D, Woudenberg J, van Exter M P. Measurements of spatial coherence of partially coherent light with and without orbital angular momentum. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(12): 2630–2637

    Google Scholar 

  124. Pires H D, Woudenberg J, van Exter M P. Measurement of the orbital angular momentum spectrum of partially coherent beams. Optics Letters, 2010, 35(6): 889–891

    Google Scholar 

  125. Zhao C, Wang F, Dong Y, Han Y, Cai Y. Effect of spatial coherence on determining the topological charge of a vortex beam. Applied Physics Letters, 2012, 101(26): 261104

    Google Scholar 

  126. Yang Y, Mazilu M, Dholakia K. Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions. Optics Letters, 2012, 37(23): 4949–4951

    Google Scholar 

  127. Escalante A Y, Perezgarcia B, Hernandezaranda R I, Swartzlander G A. Determination of angular momentum content in partially coherent beams through cross correlation measurements. In: Proceedings of SPIE Laser Beam Shaping. SPIE, 2013, 884302

    Google Scholar 

  128. Kotlyar V V, Almazov A A, Khonina S N, Soifer V A, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(5): 849–861

    MathSciNet  Google Scholar 

  129. Wang F, Cai Y, Korotkova O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Optics Express, 2009, 17(25): 22366–22379

    Google Scholar 

  130. Dennis M R, O’Holleran K, Padgett M J. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. Progress in Optics, 2009, 53: 293–363

    Google Scholar 

  131. Bogatyryova G V, Fel’de C V, Polyanskii P V, Ponomarenko S A, Soskin M S, Wolf E. Partially coherent vortex beams with a separable phase. Optics Letters, 2003, 28(11): 878–880

    Google Scholar 

  132. Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 2001, 1–1194

    Google Scholar 

  133. Palacios D M, Maleev I D, Marathay A S, Swartzlander G AJr. Spatial correlation singularity of a vortex field. Physical Review Letters, 2004, 92(14): 143905

    Google Scholar 

  134. Wolf E. Introduction to the Theory of Coherence and Polarization of Light. Cambridge: Cambridge University Press, 2007

    MATH  Google Scholar 

  135. Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(9): 2083–2096

    Google Scholar 

  136. Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device. Annalen der Physik, 2015, 527(7–8): 447–470

    MathSciNet  Google Scholar 

  137. De Santis P, Gori F, Guattari G, Palma C. An example of a Collett-Wolf source. Optics Communications, 1979, 29(3): 256–260

    Google Scholar 

  138. Ostrovsky A S, García E H. Modulation of spatial coherence of optical field by means of liquid crystal light modulator. Revista Mexicana de Física, 2005, 51(5): 442–446

    Google Scholar 

  139. Liu X, Wu T, Liu L, Zhao C, Cai Y. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam. Chinese Optics Letters, 2017, 15(3): 030002–030006

    Google Scholar 

  140. Wang F, Liu X, Yuan Y, Cai Y. Experimental generation of partially coherent beams with different complex degrees of coherence. Optics Letters, 2013, 38(11): 1814–1816

    Google Scholar 

  141. Chen J, Liu X, Yu J, Cai Y. Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam. Applied Physics B, Lasers and Optics, 2016, 122(7): 201

    Google Scholar 

  142. Polyanskii P V. Some current views on singular optics. In: Proceedings of SPIE 6th International Conference on Correlation Optics. SPIE, 2004, 31–41

    Google Scholar 

  143. Soskin M, Boriskina S V, Chong Y, Dennis M R, Desyatnikov A. Singular optics and topological photonics. Journal of Optics, 2017, 19(1): 010401

    Google Scholar 

Download references

Acknowledgements

Authors are thankful for the support of the National Natural Science Foundation of China (Grant Nos. 91750201, 11525418, 11774250 and 11804198), Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjian Cai.

Additional information

Jun Zeng spent his bachelor time at Hubei University of Arts and Science (Xiangyang, China). He studied at Taiyuan University of Science and Technology (Taiyuan, China) for his Master’s degree in optics from 2013 to 2016. Since September 2017, he became a Ph.D. candidate in School of Physical Science and Technology at Soochow University (Suzhou, China). His research topics include singular optics, atmospheric optics and optical measurement.

Rong Lin spent her bachelor time at Heze University (Heze, China). she received her master’s degree in 2012 from Shandong Normal University (Jinan, China) in 2009. Since September 2012, she became a teacher in College of Physics and Electronic Engineering, Heze University. Since September 2018, she became a Ph.D. candidate in School of Physics and Electronics, Shandong Normal University. Her research topics include optical coherence and nonlinear optics.

Xianlong Liu spent his bachelor time at Yanbian University (Jilin), and got his master’s degree at Soochow University (Jiangsu) in 2013. Latter he became a Ph.D. candidate in School of Physical Science and Technology, Soochow University, and got his doctor’s degree at 2017. He spent a year in Netherland as a Joint Ph.D. student at VU University of Amsterdam in 2017. His research topic includes laser optics, atmospheric optics and optical imaging.

Chengliang Zhao is a professor of School of Physical Science and Technology, Soochow University, China. He received his Ph.D. degree in Physics from Zhejiang University. His research interests include coherent optics, diffractive imaging, phase retrieval and optical tweezers.

Yangjian Cai is a professor of School of Physical Science and Technology, Soochow University, and also a professor of School of Physics and Electronics, Shandong Normal University, China. He received his B.Sc. degree in Physics at Zhejiang University, Ph.D. degree in Physics at Zhejiang University and Ph.D. degree in Electromagnetic theory at Royal Institute of Technology. In 2015, he obtained the National Science Fund for Distinguished Young Scholars. His research interests include optical coherence and polarization, propagation, optical imaging, particle trapping, turbulent atmosphere. He has published over 300 papers in refereed international journals, and he is a topical editor of JOSA A, a topical editor of PhotoniX and an editorial board member of Progress in Optics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Lin, R., Liu, X. et al. Review on partially coherent vortex beams. Front. Optoelectron. 12, 229–248 (2019). https://doi.org/10.1007/s12200-019-0901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-019-0901-x

Keywords

Navigation