Skip to main content
Log in

Fiber-based optical trapping and manipulation

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

An optical fiber serves as a versatile tool for optical trapping and manipulation owing to its many advantages over conventional optical tweezers, including ease of fabrication, compact configurations, flexible manipulation capabilities, ease of integration, and wide applicability. Here, we review recent progress in fiber-based optical trapping and manipulation, which includes mainly photothermal-based and optical-force-based trapping and manipulation. We focus on five topics in our review of progress in this area: massive photothermal trapping and manipulation, evanescent-field-based trapping and manipulation, dual-fiber tweezers for single-nanoparticle trapping and manipulation, single-fiber tweezers for single-particle trapping and manipulation, and single-fiber tweezers for multiple-particle/cell trapping and assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159

    Article  Google Scholar 

  2. Grier D G. A revolution in optical manipulation. Nature, 2003, 424 (6950): 810–816

    Google Scholar 

  3. Dholakia K, Reece P, Gu M. Optical micromanipulation. Chemical Society Reviews, 2008, 37(1): 42–55

    Article  Google Scholar 

  4. Dholakia K, Reece P. Optical micromanipulation takes hold. Nano Today, 2006, 1(1): 18–27

    Article  Google Scholar 

  5. Neuman K C, Block S M. Optical trapping. Review of Scientific Instruments, 2004, 75(9): 2787–2809

    Article  Google Scholar 

  6. Bustamante C, Bryant Z, Smith S B. Ten years of tension: singlemolecule DNA mechanics. Nature, 2003, 421(6921): 423–427

    Article  Google Scholar 

  7. Asbury C L, Fehr A N, Block SM. Kinesin moves by an asymmetric hand-over-hand mechanism. Science, 2003, 302(5653): 2130–2134

    Article  Google Scholar 

  8. Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853–4860

    Article  Google Scholar 

  9. Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 330(6150): 769–771

    Article  Google Scholar 

  10. Ribeiro R S R, Soppera O, Oliva A G, Guerreiro A, Jorge P A. New trends on optical fiber tweezers. Journal of Lightwave Technology, 2015, 33(16): 3394–3405

    Article  Google Scholar 

  11. Ismaeel R, Lee T, Ding M, Belal M, Brambilla G. Optical microfiber passive components. Laser & Photonics Reviews, 2013, 7(3): 350–384

    Article  Google Scholar 

  12. Daly M, Sergides M, Nic Chormaic S. Optical trapping and manipulation of micrometer and submicrometer particles. Laser & Photonics Reviews, 2015, 9(3): 309–329

    Article  Google Scholar 

  13. Lei H, Zhang Y, Li X, Li B. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber. Lab on a Chip, 2011, 11(13): 2241–2246

    Article  Google Scholar 

  14. Xin H, Lei H, Zhang Y, Li X, Li B. Photothermal trapping of dielectric particles by optical fiber-ring. Optics Express, 2011, 19(3): 2711–2719

    Article  Google Scholar 

  15. Liu Z, Guo C, Yang J, Yuan L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Optics Express, 2006, 14(25): 12510–12516

    Article  Google Scholar 

  16. Taguchi K, Atsuta K, Nakata T, Ikeda M. Levitation of a microscopic object using plural optical fibers. Optics Communications, 2000, 176(1–3): 43–47

    Article  Google Scholar 

  17. Mohanty S K, Mohanty K S, Berns M W. Organization of microscale objects using a microfabricated optical fiber. Optics Letters, 2008, 33(18): 2155–2157

    Article  Google Scholar 

  18. Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727

    Article  Google Scholar 

  19. Xin H, Xu R, Li B. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Scientific Reports, 2012, 2(1): 818

    Article  MathSciNet  Google Scholar 

  20. Soong C Y, Li W K, Liu C H, Tzeng P Y. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Optics Express, 2010, 18(3): 2168–2182

    Article  Google Scholar 

  21. Duhr S, Braun D. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Physical Review Letters, 2006, 97 (3): 038103

    Article  Google Scholar 

  22. Xin H, Li X, Li B. Massive photothermal trapping and migration of particles by a tapered optical fiber. Optics Express, 2011, 19(18): 17065–17074

    Article  Google Scholar 

  23. Xin H, Bao D, Zhong F, Li B. Photophoretic separation of particles using two tapered optical fibers. Laser Physics Letters, 2013, 10(3): 036004

    Article  Google Scholar 

  24. Lei H, Zhang Y, Li B. Particle separation in fluidic flow by optical fiber. Optics Express, 2012, 20(2): 1292–1300

    Article  Google Scholar 

  25. Zhang Y, Lei H, Li Y, Li B. Microbe removal using a micrometre-sized optical fiber. Lab on a Chip, 2012, 12(7): 1302–1308

    Article  Google Scholar 

  26. Liao D, Yu H, Zhang Y, Li B. Photothermal delivery of microscopic objects via convection flows induced by laser beam from fiber tip. Applied Optics, 2011, 50(20): 3711–3716

    Article  Google Scholar 

  27. Xu R, Xin H, Li B. Photothermal formation of vortex flows by 1.55 mm light. AIP Advances, 2013, 3(5): 052120

    Article  MathSciNet  Google Scholar 

  28. Xu R, Xin H, Li B. Massive assembly and migration of nanoparticles by laser-induced vortex flows. Applied Physics Letters, 2013, 103(1): 014102

    Article  Google Scholar 

  29. Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Physical Review Letters, 2017, 118(4): 043601

    Article  Google Scholar 

  30. Kawata S, Sugiura T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Optics Letters, 1992, 17(11): 772–774

    Article  Google Scholar 

  31. Wang K, Schonbrun E, Crozier K B. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Letters, 2009, 9(7): 2623–2629

    Article  Google Scholar 

  32. Wang J, Poon A W. Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices. Lab on a Chip, 2014, 14(8): 1426–1436

    Article  Google Scholar 

  33. Hellesø O G, Løvhaugen P, Subramanian A Z, Wilkinson J S, Ahluwalia B S. Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab on a Chip, 2012, 12(18): 3436–3440

    Article  Google Scholar 

  34. Brambilla G, Murugan G S, Wilkinson J S, Richardson D J. Optical manipulation of microspheres along a subwavelength optical wire. Optics Letters, 2007, 32(20): 3041–3043

    Article  Google Scholar 

  35. Murugan G S, Brambilla G, Wilkinson J S, Richardson D J. Optical propulsion of individual and clustered microspheres along submicron optical wires. Japanese Journal of Applied Physics, 2008, 47 (8S1): 6716

    Article  Google Scholar 

  36. Sheu FW,Wu H Y, Chen S H. Using a slightly tapered optical fiber to attract and transport microparticles. Optics Express, 2010, 18(6): 5574–5579

    Article  Google Scholar 

  37. Daly M, Truong V G, Chormaic S N. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. Optics Express, 2016, 24(13): 14470–14482

    Article  Google Scholar 

  38. Sagué G, Vetsch E, Alt W, Meschede D, Rauschenbeutel A. Coldatom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. Physical Review Letters, 2007, 99 (16): 163602

    Article  Google Scholar 

  39. Daly M, Truong V G, Phelan C, Deasy K, Chormaic S N. Nanostructured optical nanofibres for atom trapping. New Journal of Physics, 2014, 16(5): 053052

    Article  Google Scholar 

  40. Kumar R, Gokhroo V, Chormaic S N. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface. New Journal of Physics, 2015, 17(12): 123012

    Article  Google Scholar 

  41. Xu L, Li Y, Li B. Size-dependent trapping and delivery of submicrospheres using a submicrofibre. New Journal of Physics, 2012, 14(3): 033020

    Article  MathSciNet  Google Scholar 

  42. Li Y, Xu L, Li B. Optical delivery of nanospheres using arbitrary bending nanofibers. Journal of Nanoparticle Research, 2012, 14(4): 799

    Article  Google Scholar 

  43. Xin H, Cheng C, Li B. Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale, 2013, 5 (15): 6720–6724

    Article  Google Scholar 

  44. Xu C, Lei H, Zhang Y, Li B. Backward transport of nanoparticles in fluidic flow. Optics Express, 2012, 20(3): 1930–1938

    Article  Google Scholar 

  45. Xin H, Li B. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Optics Express, 2011, 19(14): 13285–13290

    Article  Google Scholar 

  46. Xin H, Li B. Multi-destination release of nanoparticles using an optical nanofiber assisted by a barrier. AIP Advances, 2012, 2(1): 012166

    Article  Google Scholar 

  47. Li L, Xin H, Lei H, Li B. Optofluidic extraction of particles using a sub-microfiber. Applied Physics Letters, 2012, 101(7): 074103

    Article  Google Scholar 

  48. Li Y, Xu L, Li B. Gold nanorod-induced localized surface plasmon for microparticle aggregation. Applied Physics Letters, 2012, 101 (5): 053118

    Article  Google Scholar 

  49. Cheng C, Xu X, Lei H, Li B. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Scientific Reports, 2016, 6(1): 20433

    Article  Google Scholar 

  50. Lei H, Xu C, Zhang Y, Li B. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Nanoscale, 2012, 4(21): 6707–6709

    Article  Google Scholar 

  51. Zhang Y, Li B. Particle sorting using a subwavelength optical fiber. Laser & Photonics Reviews, 2013, 7(2): 289–296

    Article  Google Scholar 

  52. Zhang Y, Lei H, Li B. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid. Applied Physics Express, 2013, 6(7): 072001

    Article  Google Scholar 

  53. Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869

    Article  Google Scholar 

  54. Lyons E, Sonek G. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Applied Physics Letters, 1995, 66(13): 1584–1586

    Article  Google Scholar 

  55. Taguchi K, Ueno H, Ikeda M. Rotational manipulation of a yeast cell using optical fibres. Electronics Letters, 1997, 33(14): 1249–1250

    Article  Google Scholar 

  56. Xu X, Cheng C, Xin H, Lei H, Li B. Controllable orientation of single silver nanowire using two fiber probes. Scientific Reports, 2014, 4(1): 3989

    Article  Google Scholar 

  57. Xu X, Cheng C, Zhang Y, Lei H, Li B. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures. Scientific Reports, 2016, 6(1): 29449

    Article  Google Scholar 

  58. Hu Z, Wang J, Liang J. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Optics Express, 2004, 12(17): 4123–4128

    Article  Google Scholar 

  59. Gong Y, Zhang C, Liu Q F, Wu Y, Wu H, Rao Y, Peng G D. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Optics Express, 2015, 23(3): 3762–3769

    Article  Google Scholar 

  60. Mohanty K S, Liberale C, Mohanty S, Degiorgio V. In depth fiber optic trapping of low-index microscopic objects. Applied Physics Letters, 2008, 92(15): 151113

    Article  Google Scholar 

  61. Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J, Quidant R. Three-dimensional manipulation with scanning nearfield optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299

    Article  Google Scholar 

  62. Deng H, Zhang Y, Yuan T, Zhang X, Zhang Y, Liu Z, Yuan L. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648

    Article  Google Scholar 

  63. Xin H, Li Y, Li L, Xu R, Li B. Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber. Applied Physics Letters, 2013, 103(3): 033703

    Article  Google Scholar 

  64. Liu Z L, Liu Y X, Tang Y, Zhang N, Wu F P, Zhang B. Fabrication and application of a non-contact double-tapered optical fiber tweezers. Optics Express, 2017, 25(19): 22480–22489

    Article  Google Scholar 

  65. Xin H, Liu Q, Li B. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Scientific Reports, 2014, 4(1): 6576

    Article  Google Scholar 

  66. De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539

    Article  Google Scholar 

  67. Xin H, Li B. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205

    Google Scholar 

  68. Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5 (12): e16176

    Google Scholar 

  69. Li Y, Xin H, Liu X, Zhang Y, Lei H, Li B. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 2016, 10(6): 5800–5808

    Article  Google Scholar 

  70. Xin H, Li Y, Xu D, Zhang Y, Chen C H, Li B. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418

    Article  Google Scholar 

  71. Xin H, Li Y, Liu X, Li B. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413

    Article  Google Scholar 

  72. Guo F, Li P, French J B, Mao Z, Zhao H, Li S, Nama N, Fick J R, Benkovic S J, Huang T J. Controlling cell-cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 43–48

    Article  Google Scholar 

  73. Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-achip: a microfluidic platform for long-term cell culture studies. Lab on a Chip, 2005, 5(1): 14–19

    Article  Google Scholar 

  74. Wheeler D B, Carpenter A E, Sabatini D M. Cell microarrays and RNA interference chip away at gene function. Nature Genetics, 2005, 37(6s Suppl): S25–S30

    Article  Google Scholar 

  75. Ho C T, Lin R Z, Chang W Y, Chang H Y, Liu C H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced fieldinduced dielectrophoresis trap. Lab on a Chip, 2006, 6(6): 724–734

    Article  Google Scholar 

  76. Xin H, Xu R, Li B. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser & Photonics Reviews, 2013, 7(5): 801–809

    Article  MathSciNet  Google Scholar 

  77. Li Y, Xin H, Liu X, Li B. Non-contact intracellular binding of chloroplasts in vivo. Scientific Reports, 2015, 5(1): 10925

    Article  Google Scholar 

  78. Li Y, Xin H, Cheng C, Zhang Y, Li B. Optical separation and controllable delivery of cells from particle and cell mixture. Nanophotonics, 2015, 4(3): 353–360

    Article  Google Scholar 

  79. Xin H, Zhang Y, Lei H, Li Y, Zhang H, Li B. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre. Scientific Reports, 2013, 3(1): 1993

    Article  Google Scholar 

  80. Huang J, Liu X, Zhang Y, Li B. Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes. Photonics Research, 2015, 3(6): 308–312

    Article  Google Scholar 

  81. Liu X, Huang J, Zhang Y, Li B. Optical regulation of cell chain. Scientific Reports, 2015, 5(1): 11578

    Article  Google Scholar 

  82. Choi M, Humar M, Kim S, Yun S H. Step-index optical fiber made of biocompatible hydrogels. Advanced Materials, 2015, 27(27): 4081–4086

    Article  Google Scholar 

  83. Xin H, Li Y, Li B. Controllable patterning of different cells via optical assembly of 1D periodic cell structures. Advanced Functional Materials, 2015, 25(19): 2816–2823

    Article  Google Scholar 

  84. Xin H, Li Y, Li B. Bacteria-based branched structures for bionanophotonics. Laser & Photonics Reviews, 2015, 9(5): 554–563

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11774135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojun Li.

Additional information

Hongbao Xin received his Ph.D. degree in Optical Engineering from Sun Yat-Sen University, China, in 2016. He is currently a Postdoctoral Fellow at the Biomedical Institute for Global Health Research and Technology (BIGHEART) of the National University of Singapore, and also works as a Visiting Scientist at the BioPOETS Laboratory, University of California, Berkeley, USA. His research focuses on optical trapping and manipulation, bionanophotonics and nanoplasmonics.

Baojun Li received his Ph.D. degree from Xi’an Jiaotong University in China in 1998. He worked at the Fudan University in Shanghai, China as a Postdoctoral Fellow from 1998 to 2000. After that, he worked at the Singapore- MIT Alliance and National University of Singapore from 2000 to 2002, first at a Postdoctoral Fellow and then as a Research Fellow. From April to October 2002, he worked as a Research Fellow at the Institute of Materials Research and Engineering in Singapore. He joined the Sun Yat-Sen University in Guangzhou, China as a full Professor in 2002, and served as the Director of the Research Laboratory for Optoelectronic Integration and Lasers in the State Key Laboratory of Optoelectronic Materials and Technologies. From May to November 2009, he worked at the University of Oxford as a Senior Visiting Scholar. After that, he came back to the Sun Yat-Sen University as a Chang Jiang Scholar Professor and served as the Dean of the School of Physics and Engineering. In July 2016, he moved to Jinan University, Guangzhou, China, where he currently serves as the Director for the Institute of Nanophotonics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, H., Li, B. Fiber-based optical trapping and manipulation. Front. Optoelectron. 12, 97–110 (2019). https://doi.org/10.1007/s12200-017-0755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-017-0755-z

Keywords

Navigation