Skip to main content
Log in

Microwave photonics connected with microresonator frequency combs

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Microresonator frequency combs (micro-combs) are very promising as ultra-compact broadband sources for microwave photonic applications. Conversely, microwave photonic techniques are also employed intensely in the study of microcombs to reveal and control the comb formation dynamics. In this paper, we reviewed the microwave photonic techniques and applications that are connected with microcombs. The future research directions of microcomb-based microwave photonics were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450(7173): 1214–1217

    Article  Google Scholar 

  2. Del’Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J. Octave spanning tunable frequency comb from a microresonator. Physical Review Letters, 2011, 107(6): 063901

    Article  Google Scholar 

  3. Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M, Gaeta A L. Octave-spanning frequency comb generation in a silicon nitride chip. Optics Letters, 2011, 36(17): 3398–3400

    Article  Google Scholar 

  4. Levy J S, Gondarenko A, Foster M A, Turner-Foster A C, Gaeta A L, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photonics, 2010, 4(1): 37–40

    Article  Google Scholar 

  5. Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E, Moss D J. CMOS-compatible integrated optical hyperparametric oscillator. Nature Photonics, 2010, 4(1): 41–45

    Article  Google Scholar 

  6. Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559

    Article  Google Scholar 

  7. Papp S B, Del’Haye P, Diddams S A. Mechanical control of a microrod-resonator optical frequency comb. Physical Review X, 2013, 3(3): 031003

    Article  Google Scholar 

  8. Savchenkov A A, Matsko A B, Ilchenko V S, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Physical Review Letters, 2008, 101(9): 093902

    Article  Google Scholar 

  9. Grudinin I S, Baumgartel L, Yu N. Frequency comb from a microresonator with engineered spectrum. Optics Express, 2012, 20(6): 6604–6609

    Article  Google Scholar 

  10. Wang C Y, Herr T, Del’Haye P, Schliesser A, Hofer J, Holzwarth R, Hänsch T W, Picqué N, Kippenberg T J. Mid-infrared optical frequency combs at 2.5 mm based on crystalline microresonators. Nature Communications, 2013, 4: 1345

    Article  Google Scholar 

  11. Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L. Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator. Optical Engineering (Redondo Beach, Calif.), 2014, 53(12):122607

    Article  Google Scholar 

  12. Jung H, Xiong C, Fong K Y, Zhang X, Tang H X. Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 2013, 38(15): 2810–2813

    Article  Google Scholar 

  13. Hausmann B J M, Bulu I, Venkataraman V, Deotare P, Loncar M. Diamond nonlinear photonics. Nature Photonics, 2014, 8(5): 369–374

    Article  Google Scholar 

  14. Griffith A G, Lau R K, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H, Yu M, Phare C T, Poitras C B, Gaeta A L, Lipson M. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 2015, 6: 6299

    Article  Google Scholar 

  15. Levy J S, Saha K, Okawachi Y, Foster M, Gaeta A, Lipson M. Highperformance silicon-nitride-based multiple-wavelength source. IEEE Photonics Technology Letters, 2012, 24(16): 1375–1377

    Article  Google Scholar 

  16. Wang P H, Ferdous F, Miao H, Wang J, Leaird D E, Srinivasan K, Chen L, Aksyuk V, Weiner A M. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Optics Express, 2012, 20(28): 29284–29295

    Article  Google Scholar 

  17. Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380

    Article  Google Scholar 

  18. Pfeifle J, Coillet A, Henriet R, Saleh K, Schindler P, Weimann C, Freude W, Balakireva I V, Larger L, Koos C, Chembo Y K. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Physical Review Letters, 2015, 114(9): 093902

    Article  Google Scholar 

  19. Savchenkov A A, Eliyahu D, Liang W, Ilchenko V S, Byrd J, Matsko A B, Seidel D, Maleki L. Stabilization of a Kerr frequency comb oscillator. Optics Letters, 2013, 38(15): 2636–2639

    Article  Google Scholar 

  20. Papp S B, Beha K, Del’Haye P, Quinlan F, Lee H, Vahala K J, Diddams S A. Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10–14

    Article  Google Scholar 

  21. Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D, Maleki L. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, 2015, 6: 7957

    Article  Google Scholar 

  22. Xue X, Xuan Y, Kim H J, Wang J, Leaird D E, Qi M, Weiner A M. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. Journal of Lightwave Technology, 2014, 32(20): 3557–3565

    Article  Google Scholar 

  23. Nguyen T G, Shoeiby M, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Optics Express, 2015, 23(17): 22087–22097

    Article  Google Scholar 

  24. Maiman T H. Stimulated optical radiation in ruby masers. Nature, 1960, 187(4736): 493–494

    Article  Google Scholar 

  25. Blumenthal R H. Design of a microwave frequency light modulator. Proceedings of the IRE, 1962, 50(4): 452–456

    Article  Google Scholar 

  26. Riesz R P. High speed semiconductor photodiodes. Review of Scientific Instruments, 1962, 33(9): 994–998

    Article  Google Scholar 

  27. Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887

    Article  Google Scholar 

  28. Seeds A J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628–4641

    Article  Google Scholar 

  29. Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330

    Article  Google Scholar 

  30. Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

    Article  Google Scholar 

  31. Capmany J, Li G, Lim C, Yao J. Microwave Photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867

    Article  Google Scholar 

  32. Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538

    Article  Google Scholar 

  33. Capmany J, Doménech D, Muñoz P. Graphene integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3785–3796

    Article  Google Scholar 

  34. Marpaung D, Pagani M, Morrison B, Eggleton B J. Nonlinear integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3421–3427

    Article  Google Scholar 

  35. Optical Frequency Combs. http://www.nist.gov/public_affairs/ releases/frequency_combs.cfm

  36. Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston, MA, USA: Springer, 2005

    Book  Google Scholar 

  37. Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser & Photonics Reviews, 2014, 8(3): 368–393

    Article  Google Scholar 

  38. Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750

    Article  Google Scholar 

  39. Drever RWP, Hall J L, Kowalski F V, Hough J, Ford GM, Munley A J, Ward H. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, Lasers and Optics, 1983, 31(2): 97–105

    Article  Google Scholar 

  40. Black E D. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 2001, 69(1): 79–87

    Article  Google Scholar 

  41. Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev NM, Gorodetsky M L, Kippenberg T J. Temporal solitons in optical microresonators. Nature Photonics, 2014, 8(2): 145–152

    Article  Google Scholar 

  42. Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M. Mode-locked dark pulse Kerr combs in normaldispersion microresonators. Nature Photonics, 2015, 9(9): 594–600

    Article  Google Scholar 

  43. Arcizet O, Schliesser A, Del’Haye P, Holzwarth R, Kippenberg T J. Optical frequency comb generation in monolithic microresonators. In: Matsko A B, ed. Practical Applications of Microresonators in Optics and Photonics. Boca Raton, FL, USA: CRC press, 2009, 483–506

    Google Scholar 

  44. Wang P H, Xuan Y, Xue X, Liu Y. Frequency comb-enhanced coupling in silicon nitride microresonators. In: Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO), 2015

    Google Scholar 

  45. Ferdous F, Miao H, Leaird D E, Srinivasan K, Wang J, Chen L, Varghese L T, Weiner A M. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 2011, 5(12): 770–776

    Article  Google Scholar 

  46. Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L, Kippenberg T J. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, 6(7): 480–487

    Article  Google Scholar 

  47. Papp S B, Del’Haye P, Diddams S A. Parametric seeding of a microresonator optical frequency comb. Optics Express, 2013, 21(15): 17615–17624

    Article  Google Scholar 

  48. Marian A, Stowe M C, Lawall J R, Felinto D, Ye J. United timefrequency spectroscopy for dynamics and global structure. Science, 2004, 306(5704): 2063–2068

    Article  Google Scholar 

  49. Maric M, McFerran J J, Luiten A N. Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium. Physical Review A., 2008, 77(3): 032502

    Article  Google Scholar 

  50. Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates CW, Diddams S A. Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 2011, 5(7): 425–429

    Article  Google Scholar 

  51. Savchenkov A A, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S, Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Physical Review Letters, 2004, 93 (24): 243905

    Article  Google Scholar 

  52. Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Optics Express, 2008, 16(6): 4130–4144

    Article  Google Scholar 

  53. Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs. Optics Express, 2013, 21(23): 28862–28876

    Article  Google Scholar 

  54. Matsko A B, Maleki L. Noise conversion in Kerr comb RF photonic oscillators. Journal of the Optical Society of America. B, Optical Physics, 2015, 32(2): 232–240

    Article  Google Scholar 

  55. Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology, 2006, 24(1): 201–229

    Article  Google Scholar 

  56. Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 832–846

    Article  Google Scholar 

  57. Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586

    Article  Google Scholar 

  58. Supradeepa V R, Long C M, Wu R, Ferdous F, Hamidi E, Leaird D E, Weiner A M. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6(3): 186–194

    Article  Google Scholar 

  59. Song M, Long C M, Wu R, Seo D, Leaird D E, Weiner A M. Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs. IEEE Photonics Technology Letters, 2011, 23(21): 1618–1620

    Article  Google Scholar 

  60. Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3269–3278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxiao Xue or Andrew M. Weiner.

Additional information

Xiaoxiao Xue received the B.S. and Ph.D. degrees in electronic engineering with the highest honors from Tsinghua University, Beijing, China, in 2007 and 2012, respectively. Since 2013, he has been working as a postdoctoral researcher in the Ultrafast Optics and Optical Fiber Communications Laboratory in Purdue University. His research interests include microresonatorbased Kerr comb generation, microwave photonic signal processing, radio over fiber, and phased array antennas. He was a recipient of the 2012Wang Daheng Prize funded by the Optical Society of China for his Ph.D. dissertation on microwave photonic signal processing.

Andrew M. Weiner graduated from M.I.T. in 1984 with an Sc.D. degree in electrical engineering. Upon graduation he joined Bellcore, first as a Technical Staff Member and later as a Manager of Ultrafast Optics and Optical Signal Processing Research. He moved to Purdue University in 1992 and is currently the Scifres Family Distinguished Professor of Electrical and Computer Engineering. His research focuses on ultrafast optics signal processing and applications to high-speed optical communications and ultrawideband wireless. He is especially well known for his pioneering work on programmable femtosecond pulse shaping using liquid crystal modulator arrays. He is the author of a textbook entitled Ultrafast Optics and has published more than 250 journal articles. He is a Fellow of the OSA and is a member of the US National Academy of Engineering. He has won numerous awards for his research, including the Hertz Foundation Doctoral Thesis Prize, the OSA Adolph Lomb Medal, the ASEE Curtis McGraw Research Award, the International Commission on Optics Prize, the IEEE LEOS William Streifer Scientific Achievement Award, the Alexander von Humboldt Foundation Research Award for Senior US Scientists, the OSA R.W. Wood Prize, and the IEEE Photonics Society Quantum Electronics Award. He has served as the Chair or Co-Chair of the Conference on Lasers and Electro-Optics, the International Conference on Ultrafast Phenomena and the National Academy of Engineering’s Frontiers of Engineering symposium, as the Secretary/Treasurer of the IEEE Lasers and Electro-optics Society (LEOS), and as the Vice-President of the International Commission on Optics (ICO). He is currently the Editor-in-chief of Optics Express.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Weiner, A.M. Microwave photonics connected with microresonator frequency combs. Front. Optoelectron. 9, 238–248 (2016). https://doi.org/10.1007/s12200-016-0621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-016-0621-4

Keywords

Navigation