Skip to main content

Advertisement

Log in

Chondrogenesis of Adipose-Derived Stem Cells Using an Arrayed Spheroid Format

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Objective

The chondrogenic response of adipose-derived stem cells (ASCs) is often assessed using 3D micromass protocols that use upwards of hundreds of thousands of cells. Scaling these systems up for high-throughput testing is technically challenging and wasteful given the necessary cell numbers and reagent volumes. However, adopting microscale spheroid cultures for this purpose shows promise. Spheroid systems work with only thousands of cells and microliters of medium.

Methods

Molded agarose microwells were fabricated using 2% w/v molten agarose and then equilibrated in medium prior to introducing cells. ASCs were seeded at 50, 500, 5k cells/microwell; 5k, 50k, cells/well plate; and 50k and 250k cells/15 mL centrifuge tube to compare chondrogenic responses across spheroid and micromass sizes. Cells were cultured in control or chondrogenic induction media. ASCs coalesced into spheroids/pellets and were cultured at 37 °C and 5% CO2 for 21 days with media changes every other day.

Results

All culture conditions supported growth of ASCs and formation of viable cell spheroids/micromasses. More robust growth was observed in chondrogenic conditions. Sulfated glycosaminoglycans and collagen II, molecules characteristics of chondrogenesis, were prevalent in both 5000-cell spheroids and 250,000-cell micromasses. Deposition of collagen I, characteristic of fibrocartilage, was more prevalent in the large micromasses than small spheroids.

Conclusions

Chondrogenic differentiation was consistently induced using high-throughput spheroid formats, particularly when seeding at cell densities of 5000 cells/spheroid. This opens possibilities for highly arrayed experiments investigating tissue repair and remodeling during or after exposure to drugs, toxins, or other chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Achilli, T. M., J. Meyer, and J. R. Morgan. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Theory. 12(10):1347–1360, 2012.

    Article  Google Scholar 

  2. Allon, A. A., R. A. Schneider, and J. C. Lotz. Co-culture of adult mesenchymal stem cells and nucleus pulposus cells in bilaminar pellets for intervertebral disc regeneration. SAS J. 3(2):41–49, 2009.

    Article  Google Scholar 

  3. Athanasiou, K. A., E. M. Darling, G. D. DuRaine, J. C. Hu, and A. H. Reddi. Articular Cartilage. Boca Raton: CRC Press, 2017.

    Book  Google Scholar 

  4. Awad, H. A., Y.-D.C. Halvorsen, J. M. Gimble, and F. Guilak. Effects of transforming growth factor β 1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9(6):1301–1312, 2003.

    Article  Google Scholar 

  5. Babur, B. K., K. Futrega, W. B. Lott, T. J. Klein, J. Cooper-White, and M. R. Doran. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Cell Tissue Res. 361(3):755–768, 2015.

    Article  Google Scholar 

  6. Barry, F., R. E. Boynton, B. Liu, and J. M. Murphy. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268(2):189–200, 2001.

    Article  Google Scholar 

  7. Bian, L., M. Guvendiren, R. L. Mauck, and J. A. Burdick. Hydrogels that mimic developmentally relevant matrix and n-cadherin interactions enhance msc chondrogenesis. Proc. Natl. Acad. Sci. USA. 110(25):10117–10122, 2013.

    Article  Google Scholar 

  8. Cao, B., Z. H. Li, R. Peng, and J. D. Ding. Effects of cell–cell contact and oxygen tension on chondrogenic differentiation of stem cells. Biomaterials. 64:21–32, 2015.

    Article  Google Scholar 

  9. Centola, M., B. Tonnarelli, S. Scharen, N. Glaser, A. Barbero, and I. Martin. Priming 3d cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways. Stem Cells Dev. 22(21):2849–2858, 2013.

    Article  Google Scholar 

  10. Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14(6):571–579, 2006.

    Article  Google Scholar 

  11. De Moor, L., S. Fernandez, C. Vercruysse, L. Tytgat, M. Asadian, N. De Geyter, S. Van Vlierberghe, P. Dubruel, and H. Declercq. Hybrid bioprinting of chondrogenically induced human mesenchymal stem cell spheroids. Front. Bioeng. Biotechnol. 8:484, 2020.

    Article  Google Scholar 

  12. de Windt, T. S., D. B. Saris, I. C. Slaper-Cortenbach, M. H. van Rijen, D. Gawlitta, L. B. Creemers, R. A. de Weger, W. J. Dhert, and L. A. Vonk. Direct cell–cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng. Part A. 21(19–20):2536–2547, 2015.

    Article  Google Scholar 

  13. Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science. 324(5935):1673–1677, 2009.

    Article  Google Scholar 

  14. Estes, B. T., B. O. Diekman, J. M. Gimble, and F. Guilak. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 5(7):1294–1311, 2010.

    Article  Google Scholar 

  15. Estes, B. T., B. O. Diekman, and F. Guilak. Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol. Bioeng. 99(4):986–995, 2008.

    Article  Google Scholar 

  16. Furukawa, K. S., K. Imura, T. Tateishi, and T. Ushida. Scaffold-free cartilage by rotational culture for tissue engineering. J. Biotechnol. 133(1):134–145, 2008.

    Article  Google Scholar 

  17. Futrega, K., P. G. Robey, T. J. Klein, R. W. Crawford, and M. R. Doran. A single day of tgf-beta1 exposure activates chondrogenic and hypertrophic differentiation pathways in bone marrow-derived stromal cells. Commun. Biol. 4(1):29, 2021.

    Article  Google Scholar 

  18. Gevaert, E., L. Dolle, T. Billiet, P. Dubruel, L. van Grunsven, A. van Apeldoorn, and R. Cornelissen. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering. PLoS ONE.9(8):e105171, 2014.

    Article  Google Scholar 

  19. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. The control of chondrogenesis. J. Cell. Biochem. 97(1):33–44, 2006.

    Article  Google Scholar 

  20. Gonzalez-Cruz, R. D., V. C. Fonseca, and E. M. Darling. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc. Natl. Acad. Sci. USA. 109(24):E1523-1529, 2012.

    Article  Google Scholar 

  21. Guilak, F., K. E. Lott, H. A. Awad, Q. Cao, K. C. Hicok, B. Fermor, and J. M. Gimble. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J. Cell Physiol. 206(1):229–237, 2006.

    Article  Google Scholar 

  22. Gutierrez, R. A., W. Fang, H. Kesari, and E. M. Darling. Force sensors for measuring microenvironmental forces during mesenchymal condensation. Biomaterials.270:120684, 2021.

    Article  Google Scholar 

  23. Holtzer, H., J. Abbott, J. Lash, and S. Holtzer. The loss of phenotypic traits by differentiated cells in vitro, I. dedifferentiation of cartilage cells. Proc. Natl. Acad. Sci. USA. 46(12):1533–1542, 1960.

    Article  Google Scholar 

  24. Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, and I. Martin. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell Biochem. 81(2):368–377, 2001.

    Article  Google Scholar 

  25. Jung, H., P. McClellan, J. F. Welter, and O. Akkus. Chondrogenesis of mesenchymal stem cells through local release of tgf-beta3 from heparinized collagen biofabric. Tissue Eng. Part A. 27(21–22):1434–1445, 2021.

    Article  Google Scholar 

  26. Lee, J. W., Y. H. Kim, S. H. Kim, S. H. Han, and S. B. Hahn. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J. 45:41–47, 2004.

    Article  Google Scholar 

  27. Lindberg, G. C. J., X. Cui, M. Durham, L. Veenendaal, B. S. Schon, G. J. Hooper, K. S. Lim, and T. B. F. Woodfield. Probing multicellular tissue fusion of cocultured spheroids-a 3d-bioassembly model. Adv. Sci. (Weinh).8(22):e2103320, 2021.

    Article  Google Scholar 

  28. Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1):47–55, 2005.

    Article  Google Scholar 

  29. Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4(4):415–428, 1998.

    Article  Google Scholar 

  30. Markway, B. D., G. K. Tan, G. Brooke, J. E. Hudson, J. J. Cooper-White, and M. R. Doran. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transpl. 19(1):29–42, 2010.

    Article  Google Scholar 

  31. Mwale, F., G. Yao, J. A. Ouellet, A. Petit, and J. Antoniou. Effect of parathyroid hormone on type x and type ii collagen expression in mesenchymal stem cells from osteoarthritic patients. Tissue Eng. Part A. 16(11):3449–3455, 2010.

    Article  Google Scholar 

  32. Nakamura, A., D. Murata, R. Fujimoto, S. Tamaki, S. Nagata, M. Ikeya, J. Toguchida, and K. Nakayama. Bio-3d printing ipsc-derived human chondrocytes for articular cartilage regeneration. Biofabrication.13(4):044103, 2021.

    Article  Google Scholar 

  33. Napolitano, A. P., D. M. Dean, A. J. Man, J. Youssef, D. N. Ho, A. P. Rago, M. P. Lech, and J. R. Morgan. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. BioTechniques. 43(4):496–500, 2007.

    Article  Google Scholar 

  34. Nascimento, L. D., N. F. Nicoletti, M. Peletti-Figueiro, D. Marinowic, and A. Falavigna. Hyaluronic acid in vitro response: viability and proliferation profile of human chondrocytes in 3d-based culture. Cartilage. 13:1077S-1087S, 2021.

    Article  Google Scholar 

  35. Noth, U., L. Rackwitz, A. Heymer, M. Weber, B. Baumann, A. Steinert, N. Schutze, F. Jakob, and J. Eulert. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J. Biomed. Mater. Res. A. 83(3):626–635, 2007.

    Article  Google Scholar 

  36. Occhetta, P., R. Visone, and M. Rasponi. High-throughput microfluidic platform for 3d cultures of mesenchymal stem cells. 3d cell culture. New York: Springer, pp. 303–323, 2017.

    Google Scholar 

  37. Park, S. B., M. S. Seo, H. S. Kim, and K. S. Kang. Isolation and characterization of canine amniotic membrane-derived multipotent stem cells. PLoS ONE.7(9):e44693, 2012.

    Article  Google Scholar 

  38. Penick, K. J., L. A. Solchaga, and J. F. Welter. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. BioTechniques. 39(5):687–691, 2005.

    Article  Google Scholar 

  39. Philp, D., S. S. Chen, W. Fitzgerald, J. Orenstein, L. Margolis, and H. K. Kleinman. Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells. 23(2):288–296, 2005.

    Article  Google Scholar 

  40. Rustad, K. C., V. W. Wong, M. Sorkin, J. P. Glotzbach, M. R. Major, J. Rajadas, M. T. Longaker, and G. C. Gurtner. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 33(1):80–90, 2012.

    Article  Google Scholar 

  41. Saitoh, S., I. Takahashi, I. Mizoguchi, Y. Sasano, M. Kagayama, and H. Mitani. Compressive force promotes chondrogenic differentiation and hypertrophy in midpalatal suture cartilage in growing rats. Anat. Rec. 260(4):392–401, 2000.

    Article  Google Scholar 

  42. Sarem, M., O. Otto, S. Tanaka, and V. P. Shastri. Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis. Stem Cell Res. Ther. 10(1):10, 2019.

    Article  Google Scholar 

  43. Schipani, E., H. E. Ryan, S. Didrickson, T. Kobayashi, M. Knight, and R. S. Johnson. Hypoxia in cartilage: Hif-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 15(21):2865–2876, 2001.

    Article  Google Scholar 

  44. Seda Tigli, R., S. Ghosh, M. M. Laha, N. K. Shevde, L. Daheron, J. Gimble, M. Gumusderelioglu, and D. L. Kaplan. Comparative chondrogenesis of human cell sources in 3d scaffolds. J. Tissue Eng. Regen. Med. 3(5):348–360, 2009.

    Article  Google Scholar 

  45. Solorio, L. D., A. S. Fu, R. Hernandez-Irizarry, and E. Alsberg. Chondrogenic differentiation of human mesenchymal stem cell aggregates via controlled release of tgf-beta1 from incorporated polymer microspheres. J. Biomed. Mater. Res. A. 92(3):1139–1144, 2010.

    Google Scholar 

  46. Staubli, F., M. J. Stoddart, M. D’Este, and A. Schwab. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomater. 143:253–265, 2022.

    Article  Google Scholar 

  47. Stevens, M. M., R. P. Marini, I. Martin, R. Langer, and V. Prasad Shastri. Fgf-2 enhances tgf-beta1-induced periosteal chondrogenesis. J. Orthop. Res. 22(5):1114–1119, 2004.

    Article  Google Scholar 

  48. Teixeira, L. S. M., J. C. H. Leijten, J. Sobral, R. Jin, A. A. van Apeldoorn, J. Feijen, C. van Blitterswijk, P. J. Dijkstra, and M. Karperien. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cells Mater. 23:387–399, 2012.

    Article  Google Scholar 

  49. Thomas, W. E., D. E. Discher, and V. P. Shastri. Mechanical regulation of cells by materials and tissues. MRS Bull. 35(8):578–583, 2010.

    Article  Google Scholar 

  50. Welter, J. F., L. A. Solchaga, and K. J. Penick. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay. BioTechniques. 42(6):732, 2007.

    Article  Google Scholar 

  51. Wolf, F., C. Candrian, D. Wendt, J. Farhadi, M. Heberer, I. Martin, and A. Barbero. Cartilage tissue engineering using pre-aggregated human articular chondrocytes. Eur. Cells Mater. 16:92–99, 2008.

    Article  Google Scholar 

  52. Yokoyama, A., I. Sekiya, K. Miyazaki, S. Ichinose, Y. Hata, and T. Muneta. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res. 322(2):289–298, 2005.

    Article  Google Scholar 

  53. Yoon, H. H., S. H. Bhang, J. Y. Shin, J. Shin, and B. S. Kim. Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng. Part A. 18(19–20):1949–1956, 2012.

    Article  Google Scholar 

  54. Zhan, X. Effect of matrix stiffness and adhesion ligand density on chondrogenic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. A. 108(3):675–683, 2020.

    Article  Google Scholar 

  55. Zhang, L. M., P. Q. Su, C. X. Xu, J. L. Yang, W. H. Yu, and D. S. Huang. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 32(9):1339–1346, 2010.

    Article  Google Scholar 

  56. Zigon-Branc, S., M. Markovic, J. Van Hoorick, S. Van Vlierberghe, P. Dubruel, E. Zerobin, S. Baudis, and A. Ovsianikov. Impact of hydrogel stiffness on differentiation of human adipose-derived stem cell microspheroids. Tissue Eng. Part A. 25(19–20):1369–1380, 2019.

    Article  Google Scholar 

  57. Žigon-Branc, S., A. Barlič, M. Knežević, M. Jeras, and G. Vunjak-Novakovic. Testing the potency of anti-tnf-α and anti-il-1β drugs using spheroid cultures of human osteoarthritic chondrocytes and donor-matched chondrogenically differentiated mesenchymal stem cells. Biotechnol. Prog. 34(4):1045–1058, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Center for Alternatives to Animals in Testing for use of their imaging facility and David Silverberg in the Molecular Pathology Core for helping with paraffin histology.

Author Contributions

EMD, VCF, and RAG conceived and created the experimental design. VCF and RAG carried out the experiments. EMD, VCF, and RAG analyzed and interpreted the results. RAG drafted the initial manuscript. EMD, VCF, and RAG read, revised, and approved the final submitted manuscript.

Funding

This research was supported by the National Institutes of Health (NIH) (P30 GM122732 to EMD), National Science Foundation (CMMI 2054193 to EMD, GRFP 2018260690 to RAG).

Conflict of interest

Robert A. Gutierrez, Vera C. Fonseca, and Eric M. Darling confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

No human or animals were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Darling.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 926 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, R.A., Fonseca, V.C. & Darling, E.M. Chondrogenesis of Adipose-Derived Stem Cells Using an Arrayed Spheroid Format. Cel. Mol. Bioeng. 15, 587–597 (2022). https://doi.org/10.1007/s12195-022-00746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00746-8

Keywords

Navigation