Skip to main content

Advertisement

Log in

Galectin-1 Influences Breast Cancer Cell Adhesion to E-selectin Via Ligand Intermediaries

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Invasion of other tissues during bloodborne metastasis in part requires adhesion of cancer cells to vascular endothelium by specific fluid shear-dependent receptor–ligand interactions. This study investigates the hypothesis that the adhesion is mediated by ligands shared between endothelial E-selectin and Galectin-1 (Gal-1), both of which are upregulated during inflammation and cancer.

Methods

Flow chamber adhesion and dynamic biochemical tissue analysis (DBTA) assays were used to evaluate whether Gal-1 modulates E-selectin adhesive interactions of breast cancer cells and tissues under dynamic flow conditions, while immunocytochemistry, immunohistochemistry, western blotting, and fluorescence anisotropy were used to study molecular interactions under static conditions.

Results

Dynamic adhesion assays revealed a shear-dependent binding interaction between Gal-1hFc treated breast cancer cells and tissues and E-selectin-coated beads, causing ~ 300% binding increase of the beads compared to negative controls. Immunocyto- and immunohistochemical analyses showed that Gal-1 and E-selectin fluorescent signals colocalized on cells and tissues at ~ 75% for each assay. Immunoprecipitation and Western blotting of Mac-2BP from breast cancer cell lysates revealed that Gal-1 and E-selectin share Mac-2BP as a ligand, while fluorescence anisotropy and circulating tumor cell model systems exhibited competitive or antagonistic binding between Gal-1 and E-selectin for shared ligands, including Mac-2BP. Furthermore, Mac-2BP functional blockade inhibited the effects of Gal-1 on E-selectin binding.

Conclusions

In summary, this investigation reveals a shear-dependent interaction between E-selectin and Gal-1 that may be due to intermediation by a similar or shared ligand(s), including Mac-2BP, which may provide a rational basis for development of novel diagnostics or therapeutics for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts and Figures 2016. Atlanta: American Cancer Society, 2016.

    Google Scholar 

  2. Astorgues-Xerri, L., M. E. Riveiro, A. Tijeras-Raballand, M. Serova, C. Neuzillet, S. Albert, E. Raymond, and S. Faivre. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev. 40:307–319, 2014.

    Article  Google Scholar 

  3. Auvynet, C., S. Moreno, E. Melchey, I. Coronado-Martinez, J. L. Montiel, I. Aguilar-Delfin, and Y. Rosenstein. Galectin-1 promotes human neutrophil migration. Glycobiology 23:32–42, 2013.

    Article  Google Scholar 

  4. Banh, A., J. Zhang, H. Cao, D. M. Bouley, S. Kwok, C. Kong, A. J. Giaccia, A. C. Koong, and Q. T. Le. Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Res. 71:4423–4431, 2011.

    Article  Google Scholar 

  5. Barthel, S. R., J. D. Gavino, L. Descheny, and C. J. Dimitroff. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11:1473–1491, 2007.

    Article  Google Scholar 

  6. Baum, L. G., M. Pang, N. L. Perillo, T. Wu, A. Delegeane, C. H. Uittenbogaart, M. Fukuda, and J. J. Seilhamer. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 o-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med. 181:877–887, 1995.

    Article  Google Scholar 

  7. Burdick, M. M., K. A. Henson, L. F. Delgadillo, Y. E. Choi, D. J. Goetz, D. F. J. Tees, and F. Benencia. Expression of E-selectin ligands on circulating tumor cells: cross regulation with cancer stem cell regulatory pathways? Front Oncol. 2:1–11, 2012.

    Article  Google Scholar 

  8. Burdick, M. M., N. M. Reynolds, E. W. Martin, J. V. Hawes, G. E. Carlson, C. M. Cuckler, M. C. Bates, S. R. Barthel, and C. J. Dimitroff. Isolation and characterization of chimeric human Fc-expressing proteins using protein a membrane adsorbers and a streamlined workflow. J. Vis. Exp. 83:e51023, 2014.

    Google Scholar 

  9. Camby, I., M. Le Mercier, F. Lefranc, and R. Kiss. Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R, 2006.

    Article  Google Scholar 

  10. Carlson, G. E., E. W. Martin, V. S. Shirure, R. Malgor, V. A. Resto, D. J. Goetz, and M. M. Burdick. Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues. PLoS ONE 12(3):173737, 2017.

    Article  Google Scholar 

  11. Cedeno-Laurent, F., S. R. Barthel, M. J. Opperman, D. M. Lee, R. A. Clark, and C. J. Dimitroff. Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J. Immunol. 185:4659–4672, 2010.

    Article  Google Scholar 

  12. Cedeno-Laurent, F., and C. J. Dimitroff. Galectins and their ligands: negative regulators of anti-tumor immunity. Glycoconj. J. 29:619–625, 2012.

    Article  Google Scholar 

  13. Cedeno-Laurent, F., and C. J. Dimitroff. Galectin-1 research in T-cell immunity: past, present and future. Clin Immunol. 142:107–116, 2012.

    Article  Google Scholar 

  14. Chase, S. D., J. L. Magnani, and S. I. Simon. E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Ann. Biomed. Eng. 40:849–859, 2012.

    Article  Google Scholar 

  15. Chen, X. L., P. E. Tummala, L. Olliff, and R. M. Medford. E-selectin gene expression in vascular smooth muscle cells: evidence for a tissue-specific repressor protein. Circ. Res. 80:305–311, 1997.

    Article  Google Scholar 

  16. Cho, M., and R. D. Cummings. Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells: physical and chemical characterization. J. Biol. Chem. 270:5198–5206, 1995.

    Article  Google Scholar 

  17. Cummings, R. D. S-type lectins (galectins). In: Essentials of Glycobiology, edited by Consortium of Glycobiology Editors. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1999.

    Google Scholar 

  18. Cummings, R. D., and J. B. Lowe. Selectins. In: Essentials of Glycobiology, edited by Consortium of Glycobiology Editors. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1999.

    Google Scholar 

  19. Elola, M. T., M. E. Chiesa, A. F. Alberti, J. Mordoh, and N. E. Fink. Galectin-1 receptors in different cell types. J. Biomed. Sci. 12:13–29, 2005.

    Article  Google Scholar 

  20. Esbona, K., D. Inman, S. Saha, J. Jeffery, P. Schedin, L. Wilke, and P. Keely. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 18:35, 2015.

    Article  Google Scholar 

  21. Garner, O. B., and L. G. Baum. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signaling. Biochem. Soc. Trans. 36:1472–1477, 2010.

    Article  Google Scholar 

  22. Geng, Y., T. Takatani, K. Yeh, J. W. Hsu, and M. R. King. Targeting unglycosylated MUC1 for the selective capture of highly metastatic breast cancer cells under flow. Cell. Mol. Bioeng. 6:148–159, 2013.

    Article  Google Scholar 

  23. He, J., and L. G. Baum. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab. Invest. 86:578–590, 2006.

    Article  Google Scholar 

  24. Hudelist, G., C. F. Singer, K. I. D. Pischinger, K. Kaserer, M. Manavi, E. Kubusta, and K. F. Czerwenka. Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics 6:1989–2002, 2006.

    Article  Google Scholar 

  25. Ichikawa, Y., Y. C. Lin, D. P. Dumas, G. J. Shen, E. Garcia-Junceda, M. A. Williams, R. Bayer, C. Ketcham, L. E. Walker, J. C. Paulson, and C. H. Wong. Chemical-enzymatic synthesis and conformational analysis of sialyl Lewis X and derivatives. J. Am. Chem. Soc. 114:9283–9298, 1992.

    Article  Google Scholar 

  26. Konnecke, M., R. Boscke, A. Waldmann, K. L. Bruchhage, R. Linke, R. Pries, and B. Wollenberg. Immune imbalance in nasal polyps of Caucasian chronic rhinosinusitis patients is associated with a downregulation of E-selectin. J. Immunol. Res. 1–8:2014, 2014.

    Google Scholar 

  27. Leppanen, A., S. Stowell, O. Blixt, and R. D. Cummings. Dimeric galectin-1 binds with high affinity to α2,3-sialylated and non-sialylated terminal n-acetyllactosamine units on surface-bound extended glycans. J. Biol. Chem. 280:5549–5562, 2004.

    Article  Google Scholar 

  28. Martinez-Bosch, N., and P. Navarro. Glycans and galectins: sweet new approaches in pancreatic cancer diagnosis and treatment. In: Pancreatic Cancer—Molecular Mechanism and Targets, edited by S. K. Srivastava. Rijeka: InTech Europe, 2012, pp. 305–328.

    Google Scholar 

  29. Nimrichter, L., M. M. Burdick, K. Aoki, W. Laroy, M. A. Fierro, S. A. Hudson, C. E. Von Seggern, R. J. Cotter, B. S. Bockner, M. Tiemeyer, K. Konstantopoulos, and R. L. Schnaar. E-selectin receptors on human leukocytes. Blood 112:3744–3752, 2008.

    Article  Google Scholar 

  30. Seelenmeyer, C., S. Wegehingel, I. Tews, M. Künzler, M. Aebi, and W. Nickel. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J. Cell Biol. 171:373–381, 2005.

    Article  Google Scholar 

  31. Shirure, V. S., K. A. Henson, R. L. Schnaar, L. Nimrichter, and M. M. Burdick. Gangliosides expressed on breast cancer cells are E-selectin ligands. Biochem. Biophys. Res. Commun. 406:423–429, 2011.

    Article  Google Scholar 

  32. Shirure, V. S., T. Liu, L. F. Delgadillo, C. M. Cuckler, D. F. J. Tees, F. Benencia, D. J. Goetz, and M. M. Burdick. CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am. J. Physiol. Cell Physiol. 308(1):C68–C78, 2015.

    Article  Google Scholar 

  33. Shirure, V. S., N. M. Reynolds, and M. M. Burdick. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells. PLoS ONE 7:1–12, 2012.

    Article  Google Scholar 

  34. Song, C. X., G. Fu, X. Yang, Z. Jiang, Y. Wang, and G. W. Zhou. Protein expression profiling of breast cancer cells by dissociable antibody microarray (DAMA) staining. Mol. Cell. Proteomics 7:163–169, 2008.

    Article  Google Scholar 

  35. Tinari, N., I. Kuwabara, M. E. Huflejt, P. F. Shen, S. Iacobelli, and F. T. Liu. Glycoprotein 90 K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation. Int. J. Cancer 91:167–172, 2001.

    Article  Google Scholar 

  36. Ullrich, A., I. Sures, M. D’Egidio, B. Jallal, T. J. Powell, R. Herbst, A. Dreps, M. Azam, M. Rubinstein, C. Natoli, L. K. Shawver, J. Schlessinger, and S. Iacobelli. The secreted tumor-associated antigen 90 K is a potent immune stimulator. J. Biol. Chem. 269:18401–18407, 1994.

    Google Scholar 

  37. Varki, A. Selectin ligands: will the real ones please stand up? J. Clin Invest. 99:158–162, 1997.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Alexander Ostermann, Mr. Yinan Huang, and Dr. Grady Carlson (Department of Chemical and Biomolecular Engineering, Ohio University) for their insight and technical expertise. This research was funded in part by National Institutes of Health R15CA161830 (to M.M.B.), National Science Foundation Grant 1039869 (to M.M.B.), and an Ohio University Foundation Board of Trustees 1804 Fund Award (to A.M.F.).

Conflict of interest

Monica Burdick has received research grant R15CA161830 from the National Institutes of Health and Major Research Instrumentation grant 1039869 from the National Science Foundation. Amir Farnoud has received a research grant 1804 Fund Award from the Ohio University Board of Trustees. Nathan Reynolds, Amina Mohammadalipour, Claire Hall, and Ali Asghari Adib declare that they have no conflicts of interest.

Human Studies/Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica M. Burdick.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, N.M., Mohammadalipour, A., Hall, C.R. et al. Galectin-1 Influences Breast Cancer Cell Adhesion to E-selectin Via Ligand Intermediaries. Cel. Mol. Bioeng. 11, 37–52 (2018). https://doi.org/10.1007/s12195-017-0512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0512-9

Keywords

Navigation