Skip to main content

Advertisement

Log in

Neurogenic Potential of Engineered Mesenchymal Stem Cells Overexpressing VEGF

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Numerous signaling molecules are altered following nerve injury, serving as a blueprint for drug delivery approaches that promote nerve repair. However, challenges with achieving the appropriate temporal duration of recombinant protein delivery have limited the therapeutic success of this approach. Genetic engineering of mesenchymal stem cells (MSCs) to enhance the secretion of proangiogenic molecules such as vascular endothelial growth factor (VEGF) may provide an alternative. We hypothesized that the administration of VEGF-expressing human MSCs would stimulate neurite outgrowth and proliferation of cell-types involved in neural repair. When cultured with dorsal root ganglion explants in vitro, control and VEGF-expressing MSCs (VEGF–MSCs) increased neurite extension and proliferation of Schwann cells (SCs) and endothelial cells, while VEGF–MSCs stimulated significantly greater proliferation of endothelial cells. When embedded within a 3D fibrin matrix, VEGF–MSCs maintained overexpression and expressed detectable levels over 21 days. After transplantation into a murine sciatic nerve injury model, VEGF–MSCs maintained high VEGF levels for 2 weeks. This study provides new insight into the role of VEGF on peripheral nerve injury and the viability of transplanted genetically engineered MSCs. The study aims to provide a framework for future studies with the ultimate goal of developing an improved therapy for nerve repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aframian, D. J., R. S. Redman, S. Yamano, J. Nikolovski, E. Cukierman, K. M. Yamada, M. F. Kriete, W. D. Swaim, D. J. Mooney, and B. J. Baum. Tissue compatibility of two biodegradable tubular scaffolds implanted adjacent to skin or buccal mucosa in mice. Tissue Eng. 8:649–659, 2002.

    Article  Google Scholar 

  2. Ara, J., P. Bannerman, F. Shaheen, and D. E. Pleasure. Schwann cell-autonomous role of neuropilin-2. J. Neurosci. Res. 79:468–475, 2005.

    Article  Google Scholar 

  3. Beazley, W. C., M. A. Milek, and B. H. Reiss. Results of nerve grafting in severe soft tissue injuries. Clin. Orthop. Relat. Res. 188:208–212, 1984.

    Google Scholar 

  4. Borselli, C., H. Storrie, F. Benesch-Lee, D. Shvartsman, C. Cezar, J. W. Lichtman, H. H. Vandenburgh, and D. J. Mooney. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA. 107:3287–3292, 2010.

    Article  Google Scholar 

  5. Caplan, A. I., and D. Correa. The MSC: an injury drugstore. Cell Stem Cell 9:11–15, 2011.

    Article  Google Scholar 

  6. Curtis, R., S. S. Scherer, R. Somogyi, K. M. Adryan, N. Y. Ip, Y. Zhu, R. M. Lindsay, and P. S. DiStefano. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron 12:191–204, 1994.

    Article  Google Scholar 

  7. Dellon, A. L., and S. E. Mackinnon. An alternative to the classical nerve graft for the management of the short nerve gap. Plast. Reconstr. Surg. 82:849–856, 1988.

    Article  Google Scholar 

  8. Egervari, K., G. Potter, M. L. Guzman-Hernandez, P. Salmon, M. Soto-Ribeiro, B. Kastberger, T. Balla, B. Wehrle-Haller, and J. Z. Kiss. Astrocytes spatially restrict VEGF signaling by polarized secretion and incorporation of VEGF into the actively assembling extracellular matrix. Glia 64:440–456, 2016.

    Article  Google Scholar 

  9. Fierro, F. A., S. Kalomoiris, C. S. Sondergaard, and J. A. Nolta. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29:1727–1737, 2011.

    Article  Google Scholar 

  10. Frattini, F., F. R. Lopes, F. M. Almeida, R. F. Rodrigues, L. C. Boldrini, M. A. Tomaz, A. F. Baptista, P. A. Melo, and A. M. Martinez. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng. Part A 18:2030–2039, 2012.

    Article  Google Scholar 

  11. Hammarberg, H., F. Piehl, S. Cullheim, J. Fjell, T. Hokfelt, and K. Fried. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. NeuroReport 7:857–860, 1996.

    Article  Google Scholar 

  12. Hawkins, R. L., and N. W. Seeds. Protease inhibitors influence the direction of neurite outgrowth. Brain Res. Dev. Brain Res. 45:203–209, 1989.

    Article  Google Scholar 

  13. Heumann, R., D. Lindholm, C. Bandtlow, M. Meyer, M. J. Radeke, T. P. Misko, E. Shooter, and H. Thoenen. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. U S A. 84:8735–8739, 1987.

    Article  Google Scholar 

  14. Hoben, G., Y. Yan, N. Iyer, P. Newton, D. A. Hunter, A. M. Moore, S. E. Sakiyama-Elbert, M. D. Wood, and S. E. Mackinnon. Comparison of acellular nerve allograft modification with Schwann cells or VEGF. Hand (N Y) 10:396–402, 2015.

    Article  Google Scholar 

  15. Hobson, M. I., C. J. Green, and G. Terenghi. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J. Anat. 197(Pt 4):591–605, 2000.

    Article  Google Scholar 

  16. Hoch, A. I., B. Y. Binder, D. C. Genetos, and J. K. Leach. Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS ONE 7:e35579, 2012.

    Article  Google Scholar 

  17. Hoyng, S. A., F. De Winter, S. Gnavi, R. de Boer, L. I. Boon, L. M. Korvers, M. R. Tannemaat, M. J. Malessy, and J. Verhaagen. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp. Neurol. 261:578–593, 2014.

    Article  Google Scholar 

  18. Isaacs, J. Treatment of acute peripheral nerve injuries: current concepts. J. Hand. Surg. Am. 35:491–497; quiz 498, 2010.

  19. Johansson, U., I. Rasmusson, S. P. Niclou, N. Forslund, L. Gustavsson, B. Nilsson, O. Korsgren, and P. U. Magnusson. Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes 57:2393–2401, 2008.

    Article  Google Scholar 

  20. Kalbermatten, D. F., P. J. Kingham, D. Mahay, C. Mantovani, J. Pettersson, W. Raffoul, H. Balcin, G. Pierer, and G. Terenghi. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J. Plast. Reconstr. Aesthet. Surg. 61:669–675, 2008.

    Article  Google Scholar 

  21. Kniazeva, E., S. Kachgal, and A. J. Putnam. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. Part A 17:905–914, 2011.

    Article  Google Scholar 

  22. Kutcher, M. E., M. Klagsbrun, and R. Mamluk. VEGF is required for the maintenance of dorsal root ganglia blood vessels but not neurons during development. FASEB J. 18:1952–1954, 2004.

    Google Scholar 

  23. Ladak, A., J. Olson, E. E. Tredget, and T. Gordon. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp. Neurol. 228:242–252, 2011.

    Article  Google Scholar 

  24. Leach, J. K., D. Kaigler, Z. Wang, P. H. Krebsbach, and D. J. Mooney. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27:3249–3255, 2006.

    Article  Google Scholar 

  25. Man, A. J., H. E. Davis, A. Itoh, J. K. Leach, and P. Bannerman. Neurite outgrowth in fibrin gels is regulated by substrate stiffness. Tissue Eng. Part A 17:2931–2942, 2011.

    Article  Google Scholar 

  26. Meijering, E., M. Jacob, J. C. Sarria, P. Steiner, H. Hirling, and M. Unser. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A. 58:167–176, 2004.

    Article  Google Scholar 

  27. Meyerrose, T., S. Olson, S. Pontow, S. Kalomoiris, Y. Jung, G. Annett, G. Bauer, and J. A. Nolta. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv. Drug Deliv. Rev. 62:1167–1174, 2010.

    Article  Google Scholar 

  28. Murphy, K. C., M. L. Hughbanks, B. Y. Binder, C. B. Vissers, and J. K. Leach. Engineered fibrin gels for parallel stimulation of mesenchymal stem cell proangiogenic and osteogenic potential. Ann. Biomed. Eng. 43:2010–2021, 2015.

    Article  Google Scholar 

  29. Pereira Lopes, F. R., B. C. Lisboa, F. Frattini, F. M. Almeida, M. A. Tomaz, P. K. Matsumoto, F. Langone, S. Lora, P. A. Melo, R. Borojevic, S. W. Han, and A. M. Martinez. Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy. Neuropathol. Appl. Neurobiol. 37:600–612, 2011.

    Article  Google Scholar 

  30. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    Article  Google Scholar 

  31. Radtke, C., A. A. Aizer, S. K. Agulian, K. L. Lankford, P. M. Vogt, and J. D. Kocsis. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res. 1254:10–17, 2009.

    Article  Google Scholar 

  32. Scarlato, M., J. Ara, P. Bannerman, S. Scherer, and D. Pleasure. Induction of neuropilins-1 and -2 and their ligands, Sema3A, Sema3F, and VEGF, during Wallerian degeneration in the peripheral nervous system. Exp. Neurol. 183:489–498, 2003.

    Article  Google Scholar 

  33. Scarlato, M., T. Xu, P. Bannerman, J. Beesley, U. R. Reddy, A. Rostami, S. S. Scherer, and D. Pleasure. Axon-Schwann cell interactions regulate the expression of fibroblast growth factor-5 (FGF-5). J. Neurosci. Res. 66:16–22, 2001.

    Article  Google Scholar 

  34. Sondell, M., G. Lundborg, and M. Kanje. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19:5731–5740, 1999.

    Google Scholar 

  35. Sondell, M., G. Lundborg, and M. Kanje. Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res. 846:219–228, 1999.

    Article  Google Scholar 

  36. Tarlov, I. M., and J. A. Epstein. Nerve Grafts—the Importance of an Adequate Blood Supply. J. Neurosurg. 2:49–71, 1945.

    Article  Google Scholar 

  37. Tokumine, J., O. Kakinohana, D. Cizkova, D. W. Smith, and M. Marsala. Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat. J. Neurosci. Res. 74:552–561, 2003.

    Article  Google Scholar 

  38. Wang, J., F. Ding, Y. Gu, J. Liu, and X. Gu. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res. 1262:7–15, 2009.

    Article  Google Scholar 

  39. Wilcke, I., J. A. Lohmeyer, S. Liu, A. Condurache, S. Kruger, P. Mailander, and H. G. Machens. VEGF(165) and bFGF protein-based therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo. Langenbecks Archives Surg. 392:305–314, 2007.

    Article  Google Scholar 

  40. Wood, M. D., M. R. MacEwan, A. R. French, A. M. Moore, D. A. Hunter, S. E. Mackinnon, D. W. Moran, G. H. Borschel, and S. E. Sakiyama-Elbert. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol. Bioeng. 106:970–979, 2010.

    Article  Google Scholar 

  41. Yannas, I. V., and B. J. Hill. Selection of biomaterials for peripheral nerve regeneration using data from the nerve chamber model. Biomaterials 25:1593–1600, 2004.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by R03DE021704 (to JKL) and CIRM Disease Team Grant DR2A-05423 for Critical Limb Ischemia (to FAF). The authors acknowledge Dr. Tony Passerini for providing HAECs.

Conflicts of Interest

Alan Man, Gregory Kujawski, Travis Burns, Elaine Miller, Fernando Fierro, Kent Leach, and Peter Bannerman declare that they have no conflicts of interest.

Ethical Standards

Treatment of all experimental animals was in accordance with UC Davis animal care guidelines and all National Institutes of Health animal-handling procedures and was approved by the appropriate institutional committees. No human subject research was performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Kent Leach or Peter Bannerman.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, A.J., Kujawski, G., Burns, T.S. et al. Neurogenic Potential of Engineered Mesenchymal Stem Cells Overexpressing VEGF. Cel. Mol. Bioeng. 9, 96–106 (2016). https://doi.org/10.1007/s12195-015-0425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0425-4

Keywords

Navigation