Skip to main content

Advertisement

Log in

An In Vitro Impact Model for the Study of Central Nervous System Cell Mechanobiology

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Concussive injuries are a subset of traumatic brain injuries (TBIs) during which impact of the head against another object leads to rapid deceleration and deformation of brain tissue. Mechanically triggered changes in central nervous system (CNS) cell behavior following this type of injury are believed to play a role in the pathological response to TBI observed clinically. To study the mechanobiology of CNS cells under controlled conditions an in vitro impact tester was developed to mimic the impact deceleration and strain parameters associated with concussive injuries. Similar in concept to a automotive crash test, the bench top system was capable of delivering decelerations from 0 to 300g and biaxial strains from 0 to 25% over durations from 1 to 20 ms to pure populations of cells grown in both 2d and 3d culture. The small footprint (1′ × 1′) and inexpensive design, utilizing many off the shelf components, makes it a useful lab based system. Utilizing the system, neuronally differentiated PC12 cells and cortical astrocytes were treated with both low (50 g + 10% stain) and high (100 g + 20%) single impact conditioning. Following both low and high impact testing, significant PC12 cell detachment was measured, suggesting as others have shown, a susceptibility of neurons to impact conditioning. Alternatively, astrocyte cultures showed no evidence of cellular detachment in response to either low or high impact conditioning, but significant reductions to the production of TGFβ1 and MCP-1 were measured following high impact conditioning. The relationship between impact and the production of key wound healing cytokines by astrocytes not only supports astrocyte mechano-sensitivity, but also suggests their involvement in the wound healing response following TBI. We believe this device provides a unique toolset that will aid in the exploration of cellular impact mechanobiology and that ultimately an improved understanding of cell mechanobiology will help guide the development of diagnostic techniques and therapeutic interventions targeting cells with known roles in the response to TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bain, A. C., and D. F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122:615–622, 2000.

    Article  Google Scholar 

  2. Bayly, P. V., E. E. Black, R. C. Pedersen, E. P. Leister, and G. M. Genin. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J. Biomech. 39:1086–1095, 2006.

    Article  Google Scholar 

  3. Bayly, P. V., T. S. Cohen, E. P. Leister, D. Ajo, E. C. Leuthardt, and G. M. Genin. Deformation of the human brain induced by mild acceleration. J. Neurotrauma 22:845–856, 2005.

    Article  Google Scholar 

  4. Bayly, P. V., S. Ji, S. K. Song, R. J. Okamoto, P. Massouros, and G. M. Genin. Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J. Biomech. Eng. 126:523–528, 2004.

    Article  Google Scholar 

  5. Cater, H. L., D. Gitterman, S. M. Davis, C. D. Benham, B. Morrison, 3rd, and L. E. Sundstrom. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels. J. Neurochem. 101:434–447, 2007.

    Article  Google Scholar 

  6. Cobb, B. R., J. E. Urban, E. M. Davenport, S. Rowson, S. M. Duma, J. A. Maldjian, C. T. Whitlow, A. K. Powers, and J. D. Stitzel. Head impact exposure in youth football: elementary school ages 9–12 years and the effect of practice structure. Ann. Biomed. Eng. 41:2463–2473, 2013.

    Article  Google Scholar 

  7. Coronado, V. G., L. Xu, S. V. Basavaraju, L. C. McGuire, M. M. Wald, M. D. Faul, B. R. Guzman, and J. D. Hemphill. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill Summ. 60:1–32, 2011.

    Google Scholar 

  8. Crisco, J. J., R. Fiore, J. G. Beckwith, J. J. Chu, P. G. Brolinson, S. Duma, T. W. McAllister, A. C. Duhaime, and R. M. Greenwald. Frequency and location of head impact exposures in individual collegiate football players. J. Athl. Train. 45:549–559, 2010.

    Article  Google Scholar 

  9. Crisco, J. J., B. J. Wilcox, J. G. Beckwith, J. J. Chu, A. C. Duhaime, S. Rowson, S. M. Duma, A. C. Maerlender, T. W. McAllister, and R. M. Greenwald. Head impact exposure in collegiate football players. J. Biomech. 44:2673–2678, 2011.

    Article  Google Scholar 

  10. Cullen, D. K., C. M. Simon, and M. C. LaPlaca. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res. 1158:103–115, 2007.

    Article  Google Scholar 

  11. Eckner, J. T., M. Sabin, J. S. Kutcher, and S. P. Broglio. No evidence for a cumulative impact effect on concussion injury threshold. J. Neurotrauma 28:2079–2090, 2011.

    Article  Google Scholar 

  12. Freed, L. E., and G. Vunjak-Novakovic. Spaceflight bioreactor studies of cells and tissues. Adv. Space Biol. Med. 8:177–195, 2002.

    Article  Google Scholar 

  13. Geddes-Klein, D. M., K. B. Schiffman, and D. F. Meaney. Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J. Neurotrauma 23:193–204, 2006.

    Article  Google Scholar 

  14. Gharaee-Kermani, M., E. M. Denholm, and S. H. Phan. Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J. Biol. Chem. 271:17779–17784, 1996.

    Article  Google Scholar 

  15. Greene, L. A., and A. S. Tischler. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428, 1976.

    Article  Google Scholar 

  16. Ho, L., W. Zhao, K. Dams-O’Connor, C. Y. Tang, W. Gordon, E. R. Peskind, S. Yemul, V. Haroutunian, and G. M. Pasinetti. Elevated plasma MCP-1 concentration following traumatic brain injury as a potential “predisposition” factor associated with an increased risk for subsequent development of Alzheimer’s disease. J. Alzheimers Dis. 31:301–313, 2012.

    Google Scholar 

  17. Israelsson, C., Y. Wang, A. Kylberg, C. G. Pick, B. J. Hoffer, and T. Ebendal. Closed head injury in a mouse model results in molecular changes indicating inflammatory responses. J. Neurotrauma 26:1307–1314, 2009.

    Article  Google Scholar 

  18. King, A. I. Fundamentals of impact biomechanics: Part I-Biomechanics of the head, neck, and thorax. Annu. Rev. Biomed. Eng. 2:55–81, 2000.

    Article  Google Scholar 

  19. Lasher, R. A., J. C. Wolchok, M. K. Parikh, J. P. Kennedy, and R. W. Hitchcock. Design and characterization of a modified T-flask bioreactor for continuous monitoring of engineered tissue stiffness. Biotechnol. Prog. 26:857–864, 2010.

    Article  Google Scholar 

  20. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. MacKenna, F. J. Villarreal, and A. D. McCulloch. An equibiaxial strain system for cultured cells. Am. J. Physiol. 271:C1400–C1408, 1996.

    Google Scholar 

  21. McGraw, J., G. W. Hiebert, and J. D. Steeves. Modulating astrogliosis after neurotrauma. J. Neurosci. Res. 63:109–115, 2001.

    Article  Google Scholar 

  22. McKeon, R. J., A. Hoke, and J. Silver. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136:32–43, 1995.

    Article  Google Scholar 

  23. McKeon, R. J., M. J. Jurynec, and C. R. Buck. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19:10778–10788, 1999.

    Google Scholar 

  24. Morganti-Kossmann, M. C., V. H. Hans, P. M. Lenzlinger, R. Dubs, E. Ludwig, O. Trentz, and T. Kossmann. TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood–brain barrier function. J. Neurotrauma 16:617–628, 1999.

    Article  Google Scholar 

  25. Mulder, M. M., R. W. Hitchcock, and P. A. Tresco. Skeletal myogenesis on elastomeric substrates: implications for tissue engineering. J. Biomater. Sci. Polym. Ed. 9:731–748, 1998.

    Article  Google Scholar 

  26. Myer, D. J., G. G. Gurkoff, S. M. Lee, D. A. Hovda, and M. V. Sofroniew. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772, 2006.

    Article  Google Scholar 

  27. Polikov, V. S., E. C. Su, M. A. Ball, J. S. Hong, and W. M. Reichert. Control protocol for robust in vitro glial scar formation around microwires: essential roles of bFGF and serum in gliosis. J. Neurosci. Methods 181:170–177, 2009.

    Article  Google Scholar 

  28. Ralay, Ranaivo H., S. M. Zunich, N. Choi, J. N. Hodge, and M. S. Wainwright. Mild stretch-induced injury increases susceptibility to interleukin-1beta-induced release of matrix metalloproteinase-9 from astrocytes. J. Neurotrauma 28:1757–1766, 2011.

    Article  Google Scholar 

  29. Robertson, C. L., M. Saraswati, S. Scafidi, G. Fiskum, P. Casey, and M. C. McKenna. Cerebral glucose metabolism in an immature rat model of pediatric traumatic brain injury. J. Neurotrauma 30(24):2066–2072, 2013.

  30. Rolls, A., R. Shechter, and M. Schwartz. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10:235–241, 2009.

    Article  Google Scholar 

  31. Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131:061016, 2009.

    Article  Google Scholar 

  32. Smith, G. M., and C. Strunz. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52:209–218, 2005.

    Article  Google Scholar 

  33. Takeuchi, S., H. Nawashiro, S. Sato, S. Kawauchi, K. Nagatani, H. Kobayashi, N. Otani, H. Osada, K. Wada, and K. Shima. A better mild traumatic brain injury model in the rat. Acta Neurochir. Suppl. 118:99–101, 2013.

    Google Scholar 

  34. Urban, J. E., E. M. Davenport, A. J. Golman, J. A. Maldjian, C. T. Whitlow, A. K. Powers, and J. D. Stitzel. Head impact exposure in youth football: high school ages 14 to 18 years and cumulative impact analysis. Ann. Biomed. Eng. 41:2474–2487, 2013.

    Article  Google Scholar 

  35. Vermeij, J. D., H. Aslami, K. Fluiter, J. J. Roelofs, W. M. van den Bergh, N. P. Juffermans, M. J. Schultz, K. van der Sluijs, D. van de Beek, and D. J. van Westerloo. Traumatic brain injury in rats induces lung injury and systemic immune suppression. J. Neurotrauma 30(24):2073–2079, 2013.

    Article  Google Scholar 

  36. Vonder, Haar C., D. M. Friend, D. B. Mudd, and J. S. Smith. Successive bilateral frontal controlled cortical impact injuries show behavioral savings. Behav. Brain Res. 240:153–159, 2013.

    Article  Google Scholar 

  37. Vorselen, D., W. H. Roos, F. C. Mackintosh, G. J. Wuite, and J. J. van Loon. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 28:536–547, 2014.

    Article  Google Scholar 

  38. Wolchok, J. C., C. Brokopp, C. J. Underwood, and P. A. Tresco. The effect of bioreactor induced vibrational stimulation on extracellular matrix production from human derived fibroblasts. Biomaterials 30:327–335, 2009.

    Article  Google Scholar 

  39. Wolchok, J. C., and P. A. Tresco. The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams. Biomaterials 31(36):9595–9603, 2010.

    Article  Google Scholar 

  40. Wolchok, J. C., and P. A. Tresco. Using vocally inspired mechanical conditioning to enhance the synthesis of a cell-derived biomaterial. Ann. Biomed. Eng. 41:2358–2366, 2013.

    Article  Google Scholar 

  41. Zhang, D., Y. Hu, Q. Sun, J. Zhao, Z. Cong, H. Liu, M. Zhou, K. Li, and C. Hang. Inhibition of transforming growth factor beta-activated kinase 1 confers neuroprotection after traumatic brain injury in rats. Neuroscience 238:209–217, 2013.

    Article  Google Scholar 

  42. Zohar, O., S. Schreiber, V. Getslev, J. P. Schwartz, P. G. Mullins, and C. G. Pick. Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118:949–955, 2003.

    Article  Google Scholar 

Download references

Conflict of Interest

Zach Heller, Joe Wyatt, Anna Arnaud, and Jeff Wolchok declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Wolchok.

Additional information

Associate Editor Ellen Arruda oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heller, Z., Wyatt, J., Arnaud, A. et al. An In Vitro Impact Model for the Study of Central Nervous System Cell Mechanobiology. Cel. Mol. Bioeng. 7, 521–531 (2014). https://doi.org/10.1007/s12195-014-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0347-6

keywords

Navigation