Skip to main content
Log in

Verifying institutionally developed hybrid 3D-printed coaxial cylindrical phantom for patient-specific quality assurance in stereotactic body radiation therapy of hepatocellular carcinoma

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

An accurate and reliable patient-specific quality assurance (PSQA) is crucial to ensure the safety and precision of Stereotactic body radiation therapy (SBRT) in treating Hepatocellular carcinoma (HCC). This study examines the effectiveness of a novel hybrid 3D-printed hybrid coaxial cylindrical phantom for PSQA in the SBRT of HCC. The study compared three different point dose verification techniques for PSQA: a traditional solid water phantom, two dimensional detector array I’MatriXX, and a newly developed hybrid 3D-printed phantom. Thirty SBRT HCC liver cases were examined using these techniques, and point doses were measured and compared to planned doses using the perpendicular composite method with solid water and I’MatriXX phantoms. Unlike the other two methods, the point dose was compared in true composite geometry using the hybrid 3D-printed phantom, which enhanced the accuracy and consistency of PSQA. The study aims to assess the statistical significance and accuracy of the hybrid 3D-printed phantom compared to other methods. The results showed all techniques complied with the institutional threshold criteria of within ± 3% for point-dose measurement discrepancies. The hybrid 3D-printed phantom was found to have better consistency with a lower standard deviation than traditional methods. Statistical analysis using Student’s t-test revealed the statistical significance of the hybrid 3D-printed phantom technique in patient-specific point-dose assessments with a p-value < 0.01. The hybrid 3D-printed phantom developed institutionally is cost-effective and easy to handle. It has been proven to be a valuable tool for PSQA in SBRT for the treatment of HCC and has demonstrated its practicality and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rumgay H, et al. Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer. 2022;161:108–18. https://doi.org/10.1016/j.ejca.2021.11.023.

    Article  PubMed  Google Scholar 

  2. Rao PN, Kulkarni AV. The changing epidemiology of hepatocellular carcinoma! Indian J Gastroenterol. 2023. https://doi.org/10.1007/s12664-023-01358-4.

    Article  PubMed  Google Scholar 

  3. Kimura T, et al. The current role of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC). Cancers. 2022;14(18):4383. https://doi.org/10.3390/cancers14184383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Su T-S, et al. Stereotactic body radiation therapy vs transarterial chemoembolization in inoperable barcelona clinic liver cancer stage a hepatocellular carcinoma: a retrospective, propensity-matched analysis. Front Oncol. 2020;10:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moore A, et al. Stereotactic body radiation therapy (SBRT) for definitive treatment and as a bridge to liver transplantation in early stage inoperable Hepatocellular carcinoma. Radiat Oncol. 2017;12(1):1–8. https://doi.org/10.1186/s13014-017-0899-4.

    Article  CAS  Google Scholar 

  6. Yeung R, et al. Stereotactic body radiotherapy for small unresectable hepatocellular carcinomas. Clin Oncol. 2019;31(6):365–73. https://doi.org/10.1016/j.clon.2019.01.012.

    Article  CAS  Google Scholar 

  7. Chopra S, et al. Stereotactic body radio therapy for inoperable large hepatocellular cancers: results from a clinical audit. Br J Radiol. 2019;92(1101):20181053. https://doi.org/10.1259/bjr.20181053.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Potters L, et al. American Society for Therapeutic Radiology and Oncology* and American College of Radiology Practice Guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2004;60(4):1026–32. https://doi.org/10.1016/j.ijrobp.2004.07.701.

    Article  PubMed  Google Scholar 

  9. Park JM, Kim J, Park S-Y. Prediction of VMAT delivery accuracy with textural features calculated from fluence maps. Radiat Oncol. 2019;14(1):1–14. https://doi.org/10.1186/s13014-019-1441-7.

    Article  Google Scholar 

  10. Benedict SH, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078–101. https://doi.org/10.1118/1.3438081.

    Article  PubMed  Google Scholar 

  11. Ezzell GA, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys. 2003;30(8):2089–115. https://doi.org/10.1118/1.1591194.

    Article  PubMed  Google Scholar 

  12. Low DA, et al. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656–61. https://doi.org/10.1118/1.598248.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Med Phys. 2003;30(9):2455–64. https://doi.org/10.1118/1.1598711.

    Article  PubMed  Google Scholar 

  14. Arun Krishnan MP, et al. A technique for quantifying the sensitivity of dosimetric tool gamma with 2D detector array in pretreatment IMRT plans by segment deletion method. La Radiol Med. 2021;126:453–9. https://doi.org/10.1007/s11547-020-01259-y.

    Article  Google Scholar 

  15. Kamomae T, et al. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Phys Med. 2017;44:205–11. https://doi.org/10.1016/j.ejmp.2017.10.005.

    Article  PubMed  Google Scholar 

  16. Zhang F, et al. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials. Quant Imaging Med Surg. 2019;9(1):94. https://doi.org/10.21037/qims.2018.08.01.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Colnot J, et al. "Study of the use of gel dosimetry in combination with 3D printing phantom for personalized pretreatment QA in radiotherapy. J Phys Conf Ser. 2022;2167(1):012017. https://doi.org/10.1088/1742-6596/2167/1/012017.

    Article  Google Scholar 

  18. Endarko E, et al. Dosimetry evaluation of treatment planning systems in patient-specific 3D printed anthropomorphic phantom for breast cancer after mastectomy using a single-beam 3D-CRT technique for megavoltage electron radiation therapy. J Biomed Phys Eng. 2023;13(3):217. https://doi.org/10.3166/jbpe.v0i0.2111-1428.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ehler ED, et al. Patient specific 3D printed phantom for IMRT quality assurance. Phys Med Biol. 2014;59(19):5763. https://doi.org/10.1088/0031-9155/59/19/5763.

    Article  PubMed  Google Scholar 

  20. Miften M, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53–83. https://doi.org/10.1002/mp.12810.

    Article  PubMed  Google Scholar 

  21. Dawson LA, et al. NRG/RTOG 1112: Randomized phase III study of sorafenib vs. stereotactic body radiation therapy (SBRT) followed by sorafenib in hepatocellular carcinoma (HCC). Int J Radiat Oncol Biol Phys. 2023. https://doi.org/10.1016/j.ijrobp.2022.09.002.

    Article  PubMed  Google Scholar 

  22. MadhusudhanaSresty NVN, et al. Evaluation and validation of IBA I’MatriXX array for patient-specific quality assurance of TomoTherapy®. J Med Phys. 2019;44(3):222. https://doi.org/10.4103/jmp.JMP_11_19.

    Article  CAS  Google Scholar 

  23. Wolf DC. Evaluation of the size, shape, and consistency of the liver. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Boston: Butterworths; 1990. Chapter 94. https://www.ncbi.nlm.nih.gov/books/NBK421/

  24. Patzak M, et al. Assessment of liver size by ultrasonography. J Clin Ultrasound. 2014;42(7):399–404. https://doi.org/10.1002/jcu.22151.

    Article  PubMed  Google Scholar 

  25. Suzuki K, et al. Quantitative radiology: automated CT liver volumetry compared with interactive volumetry and manual volumetry. AJR Am J Roentgenol. 2011;197(4):W706. https://doi.org/10.2214/AJR.10.5958.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chao ST, et al. ACR–ASTRO practice parameter for the performance of stereotactic body radiation therapy. Am J Clin Oncol. 2020;43(8):545–52. https://doi.org/10.1097/COC.0000000000000706.

    Article  PubMed  Google Scholar 

  27. Delombaerde L, et al. Development of 3D-printed breast phantoms for end-to-end testing of whole breast volumetric arc radiotherapy. J Appl Clin Med Phys. 2020;21(8):315–20. https://doi.org/10.1002/acm2.12976.

    Article  PubMed Central  Google Scholar 

  28. Dong L, et al. Patient-specific point dose measurement for IMRT monitor unit verification. Int J Radiat Oncol Biol Phys. 2003;56(3):867–77. https://doi.org/10.1016/S0360-3016(03)00197-4.

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ummal Momeen.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

As per institution protocol at the MVR Cancer Centre and Research Institute; such retrospective studies do not require ethical approval.

Informed consent

Informed consent was obtained at the time of treatment from the patients as per the institution (MVR Cancer Centre and Research Institute, Kozhikode 693601, India) protocol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, M.P.A., Momeen, M.U. Verifying institutionally developed hybrid 3D-printed coaxial cylindrical phantom for patient-specific quality assurance in stereotactic body radiation therapy of hepatocellular carcinoma. Radiol Phys Technol 17, 230–237 (2024). https://doi.org/10.1007/s12194-023-00769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00769-4

Keywords

Navigation