Skip to main content
Log in

Recombinant heat shock protein 27 (HSP27/HSPB1) protects against cadmium-induced oxidative stress and toxicity in human cervical cancer cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Cadmium (Cd) is a carcinogen with several well-described toxicological effects in humans, but its molecular mechanisms are still not fully understood. Overexpression of heat shock protein 27 (HSP27/HSPB1)—a multifunctional protein chaperone—has been shown to protect cells from oxidative damage and apoptosis triggered by Cd exposure. The aims of this work were to investigate the potential use of extracellular recombinant HSP27 to prevent/counteract Cd-induced cellular toxicity and to evaluate if peroxynitrite was involved in the development of Cd-induced toxicity. Here, we report that the harmful effects of Cd correlated with changes in oxidative stress markers: upregulation of reactive oxygen species, reduction in nitric oxide (NO) bioavailability, increment in lipid peroxidation, peroxynitrite (PN), and protein nitration; intracellular HSP27 was reduced. Treatments with Cd (100 μM) for 24 h or with the peroxynitrite donor, SIN-1, decreased HSP27 levels (~50%), suggesting that PN formation is responsible for the reduction of HSP27. Pre-treatments of the cells either with Nω-nitro-l-arginine methyl ester hydrochloride (L-NAME) (a pharmacological inhibitor of NO synthase) or with recombinant HSP27 (rHSP27) attenuated the disruption of the cellular metabolism induced by Cd, increasing in a 55 and 52%, respectively, the cell viability measured by CCK-8. Cd induced necrotic cell death pathways, although apoptosis was also activated; pre-treatment with L-NAME or rHSP27 mitigated cell death. Our findings show for the first time a direct relationship between Cd-induced toxicity and PN production and a role for rHSP27 as a potential therapeutic agent that may counteract Cd toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Åkesson A, Julin B, Wolk A (2008) Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res 68:6435–6441

    Article  PubMed  Google Scholar 

  • Al-Shawi AW, Dahl R (1999) The determination of cadmium and six other heavy metals in nitrate/phosphate fertilizer solution by ion chromatography. Anal Chim Acta 391:35–42

    Article  CAS  Google Scholar 

  • Alvarez B, Demicheli V, Durán R, Trujillo M, Cerveñansky C, Freeman BA, Radi R (2004) Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Free Radic Biol Med 37:813–822

    Article  CAS  PubMed  Google Scholar 

  • Andersen O, Nielsen JB, Svendsen P (1988) Oral cadmium chloride intoxication in mice: effects of chelation. Toxicology 52:65–79

    Article  CAS  PubMed  Google Scholar 

  • Arata S, Hamaguchi S, Nose K (1995) Effects of the overexpression of the small heat shock protein, HSP27, on the sensitivity of human fibroblast cells exposed to oxidative stress. J Cell Physiol 163:458–465

    Article  CAS  PubMed  Google Scholar 

  • Arriazu R, Pozuelo JM, Henriques-Gil N, Perucho T, Martín R, Rodríguez R, Santamaría L (2006) Immunohistochemical study of cell proliferation, Bcl-2, p53, and caspase-3 expression on preneoplastic changes induced by cadmium and zinc chloride in the ventral rat prostate. J Histochem Cytochem 54:981–990

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP (2001) Hsp27: novel regulator of intracellular redox state. IUBMB life 52:303–307

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS et al (1992) Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298:438–445

    Article  CAS  PubMed  Google Scholar 

  • Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World J. doi:10.1155/2013/394652

  • Bonham RT, Fine MR, Pollock FM, Shelden EA (2003) Hsp27, Hsp70, and metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged exposure to cadmium. Toxicol Appl Pharmacol 191:63–73

    Article  CAS  PubMed  Google Scholar 

  • Bruey J-M et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Cals-Grierson M-M, Ormerod A (2004) Nitric oxide function in the skin. Nitric Oxide 10:179–193

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, D’Anneo, Gammazza AM, Bavisotto CC, Barone R, Emanuele S, Cascio LF, Mocciaro E, Fais S, Macario CDE, Macario AJ, Cappello F, Lauricella M (2016) The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 7(20):28849–28867

  • Cancer IAfRo, Organization WH, Humans IWGotEoCRt (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry vol 58. IARC

  • Cantilena LR, q (1982) Decreased effectiveness of chelation therapy with time after acute cadmium poisoning. Toxicol Appl Pharmacol 63:173–180

    Article  CAS  PubMed  Google Scholar 

  • Casalino E, Calzaretti G, Sblano C, Landriscina C (2002) Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179:37–50

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Fanelli MA, Cuello-Carrion FD, Castro GN (2010a) Heat shock proteins in prostate cancer: from tumorigenesis to the clinic. Int J Hyperth 26:737–747

    Article  CAS  Google Scholar 

  • Ciocca DR, Fanelli MA, Cuello-Carrión FD, Castro GN (2010b) Small stress proteins, biomarkers of cancer. In: Simon S, Arrigo A-P (eds) Small stress proteins and human diseases. Nova Sciences Publisher Inc.,New York, Chapter 3.1, pp 327–351

  • Concannon CG, Orrenius S, Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9:195–201

    Article  CAS  PubMed  Google Scholar 

  • Croute F, Beau B, Murat J-C, Vincent C, Komatsu H, Obata F, Soleilhavoup J-P (2005) Expression of stress-related genes in a cadmium-resistant A549 human cell line. Journal of Toxicology and Environmental Health, Part A 68:703–718

    Article  CAS  Google Scholar 

  • Cuello-Carrión FD et al (2015) HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations. Clin Exp Metastasis 32:151–168

    Article  PubMed  Google Scholar 

  • Chen Y-X, Zhao X, McNulty M, O'Brien ER (2009) Recombinant HSP27 therapy reduces serum cholesterol levels and experimental atherogenesis. Circulation 120:S1153–S1153

    Article  Google Scholar 

  • Cho YA, Kim J, Woo HD, Kang M (2013) Dietary cadmium intake and the risk of cancer: a meta-analysis. PLoS One 8:e75087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries W, Lofts S, Tipping E, Meili M, Groenenberg JE, Schütze G (2007) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. In: Reviews of environmental contamination and toxicology. Springer, pp 47–89

  • Dressler J, Schulz K, Klemm M, Schüttig R, Beuthin A, Felscher D (2002) Lethal manganese-cadmium intoxication. A case report. Arch Toxicol 76:449–451

    Article  CAS  PubMed  Google Scholar 

  • Fanelli MA et al (2008) P-cadherin and β-catenin are useful prognostic markers in breast cancer patients; β-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 13:207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friberg L, Elinder C, Kjellstrom T (1992) Environmental health criteria 134: Cadmium Geneva: World Health Organization

  • Gallagher CM, Chen JJ, Kovach JS (2010) Environmental cadmium and breast cancer risk Aging (Albany NY) 2:804–814

  • Gaubin Y, Vaissade F, Croute F, Beau B, Soleilhavoup J-P, Murat J-C (2000) Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line. Biochim Biophys Acta 1495:4–13

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI et al (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  CAS  PubMed  Google Scholar 

  • Gil HW, Kang EJ, Lee KH, Yang JO, Lee EY, Hong SY (2011) Effect of glutathione on the cadmium chelation of EDTA in a patient with cadmium intoxication. Hum Exp Toxicol 30(1):79–83

  • Gilman A, Philips F, Allen R, Koelle E (1946) The treatment of acute cadmium intoxication in rabbits with 2,3-dimercaptopropanol (dimercaprol) and other mercaptans. J Pharmacol Exp Ther 87:85–101

    CAS  PubMed  Google Scholar 

  • Glebska J, Koppenol WH (2003) Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic Biol Med 35:676–682

    Article  CAS  PubMed  Google Scholar 

  • Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34:541–581

    Article  CAS  PubMed  Google Scholar 

  • Ionescu JG, Novotny J, Stejskal V, Lätsch A, Blaurock-Busch E, Eisenmann-Klein M (2006) Increased levels of transition metals in breast cancer tissue. Neuro Endocrinol Lett 27:36–39

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    Article  CAS  PubMed  Google Scholar 

  • Itoh H et al (2014) Dietary cadmium intake and breast cancer risk in Japanese women: a case–control study. Int J Hyg Environ Health 217:70–77

    Article  CAS  PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  • Joint F, Organization WH, Additives WECoF (2011) Evaluation of certain food additives and contaminants: seventy-third [73rd] report of the Joint FA

  • Jones MM, Cherian MG (1990) The search for chelate antagonists for chronic cadmium intoxication. Toxicology 62:1–25

    Article  CAS  PubMed  Google Scholar 

  • Kang M-Y, Cho S-H, Lim Y-H, Seo J-C, Hong Y-C (2013) Effects of environmental cadmium exposure on liver function in adults. Occup Environ Med 70:268–273

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park J, Lee H, Choi Y, Kim Y (2014) A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chem Commun (Camb) 50:9353–9356

    Article  CAS  Google Scholar 

  • Kirschvink N, Martin N, Fievez L, Smith N, Marlin D, Gustin P (2006) Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema. Free Radic Res 40:241–250

    Article  CAS  PubMed  Google Scholar 

  • Koyu A, Gokcimen A, Ozguner F, Bayram DS, Kocak A (2006) Evaluation of the effects of cadmium on rat liver. Mol Cell Biochem 284:81–85

    Article  CAS  PubMed  Google Scholar 

  • Lambert R, Grant C, Sauvé S (2007) Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Sci Total Environ 378:293–305

    Article  CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2', 7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  • Lee J-S et al (2005) Heat shock protein 27 interacts with vimentin and prevents insolubilization of vimentin subunits induced by cadmium. Exp Mol Med 37:427–435

    Article  CAS  PubMed  Google Scholar 

  • Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 272:1433–1436

    Article  CAS  PubMed  Google Scholar 

  • MacMillan-Crow L, Crow JP, Kerby JD, Beckman JS, Thompson JA (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 93:11853–11858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    Article  CAS  PubMed  Google Scholar 

  • Massion P, Feron O, Dessy C, Balligand J-L (2003) Nitric oxide and cardiac function ten years after, and continuing. Circ Res 93:388–398

    Article  CAS  PubMed  Google Scholar 

  • Medicine ICoI (2010) American College for Advancement in Medicine, Chelation Module. American College for Advancement in Medicine, Irvine, Calif

  • Nahomi RB, Palmer A, Green KM, Fort PE, Nagaraj RH (2014) Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta 1842:164–174

    Article  CAS  PubMed  Google Scholar 

  • Nordberg G et al (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481

    Article  PubMed  Google Scholar 

  • Nordberg G et al (2012) Kidney dysfunction and cadmium exposure–factors influencing dose–response relationships. J Trace Elem Med Biol 26:197–200

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2014) Cadmium. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals-Chapter 6: Toxic Metals in Food, section 2. Academic Press

  • Nordberg GF et al (2009) Prevalence of kidney dysfunction in humans–relationship to cadmium dose, metallothionein, immunological and metabolic factors. Biochimie 91:1282–1285

    Article  CAS  PubMed  Google Scholar 

  • Odewumi C, Latinwo LM, Sinclair A, Badisa VL, Abdullah A, Badisa RB (2015) Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells. Mol Med Rep 12:6422–6426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh S-H, Lim S-C (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212–223

    Article  CAS  PubMed  Google Scholar 

  • Organization WH, Humans IWGotEoCRt (1993) IARC monographs on the evaluation of carcinogenic risks to humans: occupational exposure of hairdressers and barbers and personal use of hair colourants; some hair dyes, cosmetic colourants, industrial dyestuffs and aromatic amines. International Agency for Research on Cancer

  • Organization WH, Joint W (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization Regional Office Europe

  • Ounis A, Cerovic Z, Briantais J, Moya I (2005) Rasband WS, ImageJ. US National Institutes of Health, Bethesda, Maryland, USA

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panjehpour M, Taher M-A, Bayesteh M (2010) The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. J Res Med Sci 15:279–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo A-P (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22:816–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possel H, Noack H, Augustin W, Keilhoff G, Wolf G (1997) 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 416:175–178

    Article  CAS  PubMed  Google Scholar 

  • Préville X et al (1999) Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 247:61–78

    Article  PubMed  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Phys 268:L699–L722

    CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991a) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  CAS  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991b) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    CAS  PubMed  Google Scholar 

  • Roccheri MC, Agnello M, Bonaventura R, Matranga V (2004) Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321:80–87

    Article  CAS  PubMed  Google Scholar 

  • Rogalla T et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor α by phosphorylation. J Biol Chem 274:18947–18956

    Article  CAS  PubMed  Google Scholar 

  • Rusanov A, Smirnova A, Poromov A, Fomicheva K, Luzgina N, Majouga A (2015) Effects of cadmium chloride on the functional state of human intestinal cells. Toxicol in Vitro 29:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Salari S et al (2013) Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones 18:53–63

    Article  CAS  PubMed  Google Scholar 

  • Salazar K, McNutt MK (2012) Mineral commodity summaries US Geological Survey, Reston, VA

  • Sandbichler AM, Höckner M (2016) Cadmium protection strategies—a hidden trade-off? Int J Mol Sci 17:139

    Article  PubMed Central  Google Scholar 

  • Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz K, Kerber S, Kelm M (1999) Reevaluation of the Griess method for determining NO/NO− 2 in aqueous and protein-containing samples. Nitric Oxide 3:225–234

    Article  CAS  PubMed  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    CAS  PubMed  Google Scholar 

  • Sinha M, Manna P, Sil PC (2008) Cadmium-induced neurological disorders: prophylactic role of taurine. J Appl Toxicol 28:974–986

    CAS  PubMed  Google Scholar 

  • Speckmann B, Steinbrenner H, Grune T, Klotz L-O (2016) Peroxynitrite: from interception to signaling. Arch Biochem Biophys 595:153–160

    Article  CAS  PubMed  Google Scholar 

  • Strumylaite L, Bogusevicius A, Abdrachmanovas O, Baranauskiene D, Kregzdyte R, Pranys D, Poskiene L (2011) Cadmium concentration in biological media of breast cancer patients. Breast Cancer Res Treat 125:511–517

    Article  CAS  PubMed  Google Scholar 

  • Strumylaite L, Kregzdyte R, Bogusevicius A, Poskiene L, Baranauskiene D, Pranys D (2014) Association between cadmium and breast cancer risk according to estrogen receptor and human epidermal growth factor receptor 2: epidemiological evidence. Breast Cancer Res Treat 145:225–232

    Article  CAS  PubMed  Google Scholar 

  • Szuster-Ciesielska A et al (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145:159–171

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi S, Jimi S, Segawa M, Kiyoshi Y (2000) Cadmium induces osteomalacia mediated by proximal tubular atrophy and disturbances of phosphate reabsorption. A study of 11 autopsies. Pathol Res Pract 196:653–663

    Article  CAS  PubMed  Google Scholar 

  • Tandon S, Singh S, Prasad S, Khandekar K, Dwivedi V, Chatterjee M, Mathur N (2003) Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol Lett 145:211–217

    Article  CAS  PubMed  Google Scholar 

  • Tang X et al. (2016) Mobilization and removing of cadmium from kidney by GMDTC utilizing renal glucose reabsorption pathway Toxicol Appl Pharmacol

  • Taylor J, DeWoskin R, Ennever FK (1999) Toxicological profile for cadmium US Agency for Toxic Substances and Disease Registry, Atlanta, GA (http://www.atsdr.cdc.gov/toxpro2.html Cited 24 June 2007)

  • Thomas L, Hodgson S, Nieuwenhuijsen M, Jarup L (2009) Early kidney damage in a population exposed to cadmium and other heavy metals. Environ Health Perspect 117:181–184

    Article  CAS  PubMed  Google Scholar 

  • Turko IV, Marcondes S, Murad F (2001) Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA: 3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol 281:H2289–H2294

    CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Viaene M, Masschelein R, Leenders J, De Groof M, Swerts L, Roels H (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 57:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viner RI, Ferrington DA, Williams TD, Bigelow DJ, Schöneich C (1999) Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J 340:657–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Welsh MJ (1996) Expression of the 25-kDa heat-shock protein (HSP27) correlates with resistance to the toxicity of cadmium chloride, mercuric chloride, cis-platinum (II)-diammine dichloride, or sodium arsenite in mouse embryonic stem cells transfected with sense or antisense HSP27 cDNA. Toxicol Appl Pharmacol 141:330–339

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    Article  CAS  PubMed  Google Scholar 

  • Zucker B, Hanusch J, Bauer G (1997) Glutathione depletion in fibroblasts is the basis for apoptosis-induction by endogenous reactive oxygen species. Cell Death Differ 4:388–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Youngmi Kim (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University, Korea) for the gift of the fluorescent probe-1 for the peroxynitrite determination.

This work was supported by operating grants jointly funded by the Canadian Institute for Health Research (CIHR) and Medtronic Canada (ISO 110836) as well as the Heart and Stroke Foundation of Canada (G-13-0001599). CIHR and Medtronic also collectively funded a peer-reviewed research chair [grant IRC 57093] to EO. The National Research Council of Argentina (CONICET) is also thanked for financial support [PIP 11220110100836 DAS 30844] to DRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariel A. Fanelli or Edward R. O’Brien.

Additional information

Fanelli and O’Brien contributed equally to this work.

Electronic supplementary material

.

Supplementary figure 1

Peroxynitrite production A) HeLa cells pre-loaded with probe-1 were exposed either to Cd, SIN-1 (positive control, donor of NO and superoxide) or 10 μM H2O2 (which induces superoxide species but not peroxynitrite). The spectra were obtained each minute during a period of 30 min and fluorescence intensity at 540 nm was measured with excitation at 430 nm. B-C) Untreated control HeLa cells or pre-treated with 500 μM L-NAME were pre-loaded with probe 1 and then exposed to 5 μM Cd (B) or 100 μM Cd (C) to assay peroxynitrite production. In all cases the graph values represent the means of three independent experiments ±SD (n=6). (GIF 51 kb)

.

High resolution image (TIFF 10254 kb)

.

Supplementary figure 2

HSP27 content in HeLa cells. A) Western blott of HeLa cells Control (line 1), treated with 100 μM Cd during 24h (line 2), L-NAME and then Cd (line 3), pre-treated with rHSP2 or rC1 and then Cd (line 4-5 respectively). B) Optical density of HSP27/beta-actin expression. The graph values represent the means of three independent experiments ±SD (* p< 0,05; ** p< 0,01; *** p< 0,001). (GIF 39.5 kb)

.

High resolution image (TIFF 7288 kb)

.

Supplementary figure 3

Peroxynitrite production and cellular effects. (GIF 66.2 kb)

.

High resolution image (TIFF 15515 kb)

.

Supplementary figure 4

Viability of HeLa cells measured as metabolic activity with CCK-8. A) HeLa cells were grown in 96 well plates and then the cells were exposed to the indicated doses of Cd during different times (3-24 h). B) HeLa pScr cells were stable transfected with a scramble plasmid, selected as indicate in methodology grown in 96 well plate with hygronomycin for 24 hr and then exposed to the indicated doses of Cd in serum-hygronomycin free media. C) HeLa p762 cells (downregulation for HSP27 in a 50%), were grown in 96 well plate with hygronomycin for 24 hr and then exposed to the indicated doses of Cd in serum-hygronomycin free media. All the values are representative of the means of three independent experiments ±SD (* p< 0,05; ** p< 0,01; *** p< 0,001; n=6 for each data point). (GIF 41.4 kb)

.

High resolution image (TIFF 9918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Olmedo, D.G., Biaggio, V.S., Koumbadinga, G.A. et al. Recombinant heat shock protein 27 (HSP27/HSPB1) protects against cadmium-induced oxidative stress and toxicity in human cervical cancer cells. Cell Stress and Chaperones 22, 357–369 (2017). https://doi.org/10.1007/s12192-017-0768-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-017-0768-y

Keywords

Navigation