Skip to main content
Log in

Increased expression of microRNA-378a-5p in acute ethanol exposure of rat cardiomyocytes

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Alcohol abuse is a risk factor for a distinct form of congestive heart failure, known as alcoholic cardiomyopathy (ACM). Here, we investigate how microRNAs may participate in the induction of cardiomyocyte apoptosis associated with ethanol exposure in vitro. Increasing the concentrations of ethanol to primary rat cardiomyocytes resulted in elevated apoptosis assessed by annexin V and propidium iodide staining, and reduced expression of an enzyme for alcohol detoxification aldehyde dehydrogenase 2 (ALDH2). These ethanol effects were accompanied by a substantial elevation of miR-378a-5p. Driving miR-378a-5p overexpression in cardiomyocytes decreased ALDH2. The specific interaction of miR-378a-5p with the 3’UTR of ALDH2 was examined by luciferase reporter assays, and we found that miR-378a-5p activity depends on a complementary base pairing at the 3′-UTR region of ALDH2 mRNA. Finally, ethanol-induced apoptosis in cardiomyocytes was attenuated in the presence of anti-miR378a-5p. Collectively, these data implicate a likely involvement of miR-378a-5p in the stimulation of cardiomyocyte apoptosis through ALDH2 gene suppression, which might play a potential role in the pathogenesis of ACM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444. doi:10.1074/jbc.M110.145870

    Article  CAS  PubMed  Google Scholar 

  • Bala S et al (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56:1946–1957. doi:10.1002/hep.25873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balbo S, Brooks PJ (2015) Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis. Adv Exp Med Biol 815:71–88. doi:10.1007/978-3-319-09614-8_5

    Article  PubMed  Google Scholar 

  • Brooks PJ, Theruvathu JA (2005) DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 35:187–193

    Article  CAS  PubMed  Google Scholar 

  • Camera DM, Ong JN, Coffey VG, Hawley JA (2016) Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. Front Physiol 7:87. doi:10.3389/fphys.2016.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrer M et al (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378. Proc Natl Acad Sci U S A 109:15330–15335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey A, Cederbaum AI (2006) Alcohol and oxidative liver injury. Hepatology 43:S63–S74. doi:10.1002/hep.20957

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Beier JI, Baldauf KJ, Jokinen JD, Zhong H, Arteel GE (2014) Acute ethanol preexposure promotes liver regeneration after partial hepatectomy in mice by activating ALDH2. American journal of physiology Gastrointestinal and liver physiology 306:G37–G47. doi:10.1152/ajpgi.00085.2013

    Article  CAS  PubMed  Google Scholar 

  • Dolganiuc A, Petrasek J, Kodys K, Catalano D, Mandrekar P, Velayudham A, Szabo G (2009) MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 33:1704–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doser TA, Turdi S, Thomas DP, Epstein PN, Li SY, Ren J (2009) Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake–induced myocardial hypertrophy and contractile dysfunction. Circulation 119:1941–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30:5–13

    PubMed  PubMed Central  Google Scholar 

  • Fan F et al (2013) MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr Pharm Des 19:4865–4873

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Sola J (2015) Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat Rev Cardiol 12:576–587

    Article  PubMed  Google Scholar 

  • Fernandez-Sola J, Fatjo F, Sacanella E, Estruch R, Bosch X, Urbano-Marquez A, Nicolas JM (2006) Evidence of apoptosis in alcoholic cardiomyopathy. Hum Pathol 37:1100–1110. doi:10.1016/j.humpath.2006.03.022

    Article  CAS  PubMed  Google Scholar 

  • Ganesan J et al (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127:2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes KM et al (2014) Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res 103:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong D, Zhang Y, Zhang H, Gu H, Jiang Q, Hu S (2012) Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia-reperfusion injury. Cardiovasc Toxicol 12:350–358. doi:10.1007/s12012-012-9179-6

    Article  PubMed  Google Scholar 

  • Guzzo-Merello G, Cobo-Marcos M, Gallego-Delgado M, Garcia-Pavia P (2014) Alcoholic cardiomyopathy. World J Cardiol 6:771–781. doi:10.4330/wjc.v6.i8.771

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzzo-Merello G et al (2015) Natural history and prognostic factors in alcoholic cardiomyopathy. JACC Heart Fail 3:78–86

    Article  PubMed  Google Scholar 

  • Ignacio C, Hicks SD, Burke P, Lewis L, Szombathyne-Meszaros Z, Middleton FA (2015) Alterations in serum microRNA in humans with alcohol use disorders impact cell proliferation and cell death pathways and predict structural and functional changes in brain. BMC Neurosci 16:55. doi:10.1186/s12868-015-0195-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing L et al (2012) Chronic alcohol intake-induced oxidative stress and apoptosis: role of CYP2E1 and calpain-1 in alcoholic cardiomyopathy. Mol Cell Biochem 359:283–292. doi:10.1007/s11010-011-1022-z

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Nishimura FT, Abe S, Fukunaga T, Tanii H, Saijoh K (2009) A promoter polymorphism in the ALDH2 gene affects its basal and acetaldehyde/ethanol-induced gene expression in human peripheral blood leukocytes and HepG2 cells. Alcohol Alcohol 44:261–266. doi:10.1093/alcalc/agn123

    Article  CAS  PubMed  Google Scholar 

  • Koda K et al (2010) Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells. Circulation 122:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 104:20350–20355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  • Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD (2011) Up-regulation of microRNAs in brain of human alcoholics Alcohol Clin Exp Res 35:1928–1937 doi:10.1111/j.1530-0277.2011.01544.x

  • Li SP, Liu B, Song B, Wang CX, Zhou YC (2015) miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in Mus musculus cardiac myocytes. Eur Rev Med Pharmacol Sci 19:752–758

    PubMed  Google Scholar 

  • Li SY, Li Q, Shen JJ, Dong F, Sigmon VK, Liu Y, Ren J (2006) Attenuation of acetaldehyde-induced cell injury by overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene in human cardiac myocytes: role of MAP kinase signaling. J Mol Cell Cardiol 40:283–294

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Ren J (2008) Cardiac overexpression of alcohol dehydrogenase exacerbates chronic ethanol ingestion-induced myocardial dysfunction and hypertrophy: role of insulin signaling and ER stress. J Mol Cell Cardiol 44:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao J, Sun A, Xie Y, Isse T, Kawamoto T, Zou Y, Ge J (2012) Aldehyde dehydrogenase-2 deficiency aggravates cardiac dysfunction elicited by endoplasmic reticulum stress induction. Mol Med 18:785–793. doi:10.2119/molmed.2011.00466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CG, Calin GA, Volinia S, Croce CM (2008) MicroRNA expression profiling using microarrays. Nature protocols 3:563–578. doi:10.1038/nprot.2008.14

    Article  CAS  PubMed  Google Scholar 

  • Ma H et al (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49:322–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda RC et al (2010) MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 34:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M (2013) A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 288:11216–11232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan SK, Pachunka JM, Mott JL (2015) Role of microRNAs in alcohol-induced multi-organ injury. Biomolecules 5:3309–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    Article  PubMed  Google Scholar 

  • Piano MR, Phillips SA (2014) Alcoholic cardiomyopathy: pathophysiologic insights. Cardiovasc Toxicol 14:291–308. doi:10.1007/s12012-014-9252-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J (2007) Acetaldehyde and alcoholic cardiomyopathy: lessons from the ADH and ALDH2 transgenic models Novartis Found Symp 285:69–76; discussion 76–69, 198–199

  • Ren J, Wold LE (2008) Mechanisms of alcoholic heart disease. Ther Adv Cardiovasc Dis 2:497–506

    Article  PubMed  Google Scholar 

  • Robador PA, Seyedi N, Chan NY, Koda K, Levi R (2012) Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cepsilon. J Pharmacol Exp Ther 343:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setshedi M, Wands JR, Monte SM (2010) Acetaldehyde adducts in alcoholic liver disease. Oxidative Med Cell Longev 3:178–185

    Article  Google Scholar 

  • Wang LL et al (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24:562–579

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2015) MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int 15:40. doi:10.1186/s12935-015-0192-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Colecraft HM (2009) Primary culture of adult rat heart myocytes Journal of visualized experiments : JoVE doi:10.3791/1308

  • Zhang H, Wang F, Xu H, Liu Y, Liu J, Zhao H, Gelernter J (2014) Differentially co-expressed genes in postmortem prefrontal cortex of individuals with alcohol use disorders: influence on alcohol metabolism-related pathways. Hum Genet 133:1383–1394. doi:10.1007/s00439-014-1473-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NO. 81500210)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Xianxian Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Zhongkai Wang and Jingwen Song contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Song, J., Zhang, L. et al. Increased expression of microRNA-378a-5p in acute ethanol exposure of rat cardiomyocytes. Cell Stress and Chaperones 22, 245–252 (2017). https://doi.org/10.1007/s12192-016-0760-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0760-y

Keywords

Navigation