Skip to main content
Log in

Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Previously, we showed that infecting human intestinal epithelial cells (Caco-2) with rotavirus (RV) increases the release of extracellular vesicles (EVs) with an immunomodulatory function that, upon concentration at 100,000×g, present buoyant densities on a sucrose gradient of between 1.10 to 1.18 g/ml (characteristic of exosomes) and higher than 1.24 g/ml (proposed for apoptotic bodies). The effect of cellular death induced by RV on the composition of these EV is unknown. Here, we evaluated exosome (CD63, Hsc70, and AChE) and apoptotic body (histone H3) markers in EVs isolated by differential centrifugation (4000×g, 10,000×g, and 100,000×g) or filtration/ultracentrifugation (100,000×g) protocols. When we infected cells in the presence of caspase inhibitors, Hsc70 and AChE diminished in EVs obtained at 100,000×g, but not in EVs obtained at 4000×g or 10,000×g. In addition, caspase inhibitors decreased CD63 and AChE in vesicles with low and high buoyant densities. Without caspase inhibitors, RV infection increased exosome markers in all of the EVs obtained by differential centrifugation. However, CD63 preferentially localized in the 100,000×g fraction and H3 only increased in EVs concentrated at 100,000×g and with high buoyant densities on a sucrose gradient. Thus, RV infection increases the release of EVs that, upon concentration at 100,000×g, are composed by exosomes and apoptotic bodies, which can partially be separated using sucrose gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104

    Article  CAS  PubMed  Google Scholar 

  • Barreto A, Rodriguez LS, Rojas OL, Wolf M, Greenberg HB, Franco MA, Angel J (2010) Membrane vesicles released by intestinal epithelial cells infected with rotavirus inhibit T-cell function. Viral Immunol 23:595–608

    Article  CAS  PubMed  Google Scholar 

  • Bastos-Amador P et al (2012a) Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. J Leukoc Biol 91:751–758. doi:10.1189/jlb.0111054

    Article  CAS  PubMed  Google Scholar 

  • Bastos-Amador P, Royo F, Gonzalez E, Conde-Vancells J, Palomo-Diez L, Borras FE, Falcon-Perez JM (2012b) Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability. J Proteome 75:3574–3584. doi:10.1016/j.jprot.2012.03.054

    Article  CAS  Google Scholar 

  • Bautista (2015) Unpublished results

  • Bhowmick R et al (2012) Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J Biol Chem 287:35004–35020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C (2012a) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracellular Vesicles 1:18397

    Article  CAS  Google Scholar 

  • Bobrie A et al (2012b) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72:4920–4930

    Article  CAS  PubMed  Google Scholar 

  • Boshuizen JA et al (2003) Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol 77:13005–13016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338:21–30

    Article  CAS  PubMed  Google Scholar 

  • Chaibi C, Cotte-Laffitte J, Sandre C, Esclatine A, Servin AL, Quero AM, Geniteau-Legendre M (2005) Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology 332:480–490

    Article  CAS  PubMed  Google Scholar 

  • Cheng MF, Lee CH, Hsia KT, Huang GS, Lee HS (2009) Methylation of histone H3 lysine 27 associated with apoptosis in osteosarcoma cells induced by staurosporine. Histol Histopathol 24:1105–1111

    CAS  PubMed  Google Scholar 

  • Choi DS et al (2007) Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 6:4646–4655

    Article  CAS  PubMed  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artifacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  • Crescitelli R et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2:20677

    Google Scholar 

  • Dieker JW et al (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum 56:1921–1933

    Article  CAS  PubMed  Google Scholar 

  • Franz S et al (2007) After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ 14:733–742

    Article  CAS  PubMed  Google Scholar 

  • Friggeri A et al (2012) Extracellular histones inhibit efferocytosis. Mol Med 18:825–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Georgieva EI, Sendra R (1999) Mobility of acetylated histones in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 269:399–402

    Article  CAS  PubMed  Google Scholar 

  • Gutwein P et al (2005) Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res 11:2492–2501

    Article  CAS  PubMed  Google Scholar 

  • Gyorgy B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halasz P, Holloway G, Coulson BS (2010) Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection. J Gen Virol 91:2007–2018

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. J Biol Chem 262:9412–9420

    CAS  PubMed  Google Scholar 

  • Kalra H et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane JD, Allan VJ, Woodman PG (2005) Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci 118:4059–4071

    Article  CAS  PubMed  Google Scholar 

  • Lemaire C, Andreau K, Souvannavong V, Adam A (1998) Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett 425:266–270

    Article  CAS  PubMed  Google Scholar 

  • Martin-Latil S, Mousson L, Autret A, Colbere-Garapin F, Blondel B (2007) Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol 81:4457–4464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73:1907–1920

    Article  CAS  Google Scholar 

  • Meckes DG Jr, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85:12844–12854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narvaez CF, Angel J, Franco MA (2005) Interaction of rotavirus with human myeloid dendritic cells. J Virol 79:14526–14535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostrowski M et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30, sup pp 11-13

    Article  CAS  PubMed  Google Scholar 

  • Pieterse E, Hofstra J, Berden J, Herrmann M, Dieker J, van der Vlag J (2014) Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin Exp Immunol 179:68–74

    Article  Google Scholar 

  • Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ricchi P, Palma AD, Matola TD, Apicella A, Fortunato R, Zarrilli R, Acquaviva AM (2003) Aspirin protects Caco-2 cells from apoptosis after serum deprivation through the activation of a phosphatidylinositol 3-kinase/AKT/p21Cip/WAF1pathway. Mol Pharmacol 64:407–414

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez LS, Barreto A, Franco M, Angel J (2009) Immunomodulators released during rotavirus infection of polarized Caco-2 cells. Viral Immunol 22:163–172

    Article  PubMed  Google Scholar 

  • Rodriguez LS, Narvaez CF, Rojas OL, Franco MA, Angel J (2012) Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response. Cell Immunol 272:154–161

    Article  CAS  PubMed  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    Article  CAS  PubMed  Google Scholar 

  • Thery C (2011) Exosomes: secreted vesicles and intercellular communications F1000. Biol Rep 3:15

    Google Scholar 

  • Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids Curr Protoc Cell Biol Chapter 3:Unit 3 22

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  • Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–349

    Article  PubMed  Google Scholar 

  • Walter D, Matter A, Fahrenkrog B (2014) Loss of histone H3 methylation at lysine 4 triggers apoptosis in Saccharomyces cerevisiae. PLoS Genet 10:e1004095

    Article  PubMed Central  PubMed  Google Scholar 

  • Wickman GR et al (2013) Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ. doi:10.1038/cdd.2013.69

    PubMed Central  PubMed  Google Scholar 

  • Xie Y et al (2009) Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-beta1 inducing CD8+ T cell anergy and CD4+ Tr1 cell responses. Cancer Res 69:7756–7766

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed by the Pontificia Universidad Javeriana through the projects “Study of the mechanism in which microvesicles are released by intestinal cells infected by rotavirus inhibiting the function of the T lymphocyte” (ID 3693) and “Approach to the proteomic analysis of vesicular structures produced during the infection by rotavirus of intestinal epithelial cells” (ID 3104) and ID6331.

Conflict of interest

No potential conflicts of interest of the authors were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Barreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista, D., Rodríguez, LS., Franco, M.A. et al. Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes. Cell Stress and Chaperones 20, 697–708 (2015). https://doi.org/10.1007/s12192-015-0597-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0597-9

Keywords

Navigation