Skip to main content
Log in

Smoothing composite proximal gradient algorithm for sparse group Lasso problems with nonsmooth loss functions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In recent years, the sparse and group sparse optimization problem has attracted extensive attention due to its wide applications in statistics, bioinformatics, signal interpretation and machine learning, which yields the sparsity both in group-wise and element-wise. In this paper, the sparse and group sparse optimization problem with a nonsmooth loss function is considered, where the sparsity and group sparsity are induced by a penalty composed of a combination of \(\ell _1\) norm and \(\ell _{2,1}\) norm, so it is called the sparse group Lasso (SGLasso) problem. To solve this problem, the nonsmooth loss function is smoothed first. Then, based on the smooth approximation of the loss function, a smoothing composite proximal gradient (SCPG) algorithm is proposed. It is showed that any accumulation point of the sequence generated by SCPG algorithm is a global optimal solution of the problem. Moreover, it is proved that the convergence rate of the objective function value is \(O(\frac{1}{k^{1-\sigma }})\) where \(\sigma \in (0.5,1)\) is a constant. Finally, numerical results illustrate that the proposed SCPG algorithm is effective and robust for sparse and group sparse optimization problems. Especially, compared with some popular algorithms, SCPG algorithm has obvious advantages in anti-outlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Argyriou, A., Micchelli, C.A., Pontil, M.: Efficient first order methods for linear composite reularizers. arXiv:1104.1436v1 (2011)

  2. Allahyar, A., De Ridder, J.: FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics 31(12), 311–319 (2015)

    Article  Google Scholar 

  3. Bian, W., Chen, X.J.: A smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty. SIAM J. Numer. Anal. 58(1), 858–883 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bickel, P.J., Ritov, Y.: Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)

    Article  MathSciNet  Google Scholar 

  5. Breheny, P., Huang, J.: Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat. Comput. 25(2), 173–187 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  6. Cai, T.T., Zhang, A.R., Zhou, Y.C.: Sparse group lasso: optimal sample complexity, convergence rate, and statistical inference. IEEE Trans. Inf. Theory 68(9), 5975–6002 (2022)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chatterjee, S., Steinhaeuser, K.: Sparse group Lasso: consistency and climate applications. In: Proceedings of the SIAM International Conference on Data Mining, pp. 47–58 (2012)

  9. Fan, J.Q., Li, R.Z.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group Lasso and a sparse group lasso. arXiv:1001.0736 (2010)

  11. Feng, X., Yan, S., Wu, C.: The \(\ell _{2, q}\) regularized group sparse optimization: lower bound theory, recovery bound and algorithms. Appl. Comput. Harmon. Anal. 49(2), 381–414 (2020)

    Article  MathSciNet  Google Scholar 

  12. Hu, Y.H., Li, C., Meng, K.W., Qin, J., Yang, X.Q.: Group sparse optimization via \(L_{p, q}\) regularization. J. Mach. Learn. Res. 18(1), 960–1011 (2017)

    Google Scholar 

  13. Jaganathan, K., Oymak, S., Hassibi, B.: Sparse phase retrieval: convex algorithms and limitations. In: IEEE International Symposium on Information Theory, pp. 1022–1026 (2013)

  14. Jiao, Y., Jin, B., Lu, X.: Group sparse recovery via the \(\ell _{0}(\ell _2)\) penalty: theory and algorithm. IEEE Trans. Signal Process. 65(4), 998–1012 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Johnstone, I.M., Lu, A.Y.: On consistency and sparsity for principal components analysis in high dimensions. J. Am. Stat. Assoc. 104(486), 682–693 (2009)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, W., Bian, W., Toh, K.C.: DC algorithms for a class of sparse group \(\ell _0 \) regularized optimization problems. SIAM J. Optim. 32(3), 1614–1641 (2022)

    Article  MathSciNet  Google Scholar 

  17. Li, X.D., Sun, D.F., Toh, K.C.: A highly efficient semismooth newton augmented Lagrangian method for solving Lasso problems. SIAM J. Optim. 28(1), 433–458 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, X.D., Sun, D.F., Toh, K.C.: On efficiently solving the subproblems of a level-set method for fused Lasso problems. SIAM J. Optim. 28(2), 1842–1862 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, Y.M., Nan, B., Zhu, J.: Multivariate sparse group Lasso for the multivariate multiple linear regression with an arbitrary group structure. Biometrics 71(2), 354–363 (2015)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lounici, K., Pontil, M.: Taking advantage of sparsity in multi-task learning. In: The 22nd Conference on Learning Theory (2009)

  21. Lozano, A.C., Swirszcz, G.: Multi-level Lasso for sparse multi-task regression. In: Proceedings of the 29th International Conference on Machine Learning, pp. 595–602 (2012)

  22. Ma, Z.: Sparse principal component analysis and iterative thresholding. Ann. Stat. 41(2), 772–801 (2013)

    Article  MathSciNet  Google Scholar 

  23. Nikolova, M., Tan, P.: Alternating structure-adapted proximal gradient descent for nonconvex nonsmooth block-regularized problems. SIAM J. Optim. 29(3), 2053–2078 (2019)

    Article  MathSciNet  Google Scholar 

  24. Oymak, S., Jalali, A., Fazel, M.: Noisy estimation of simultaneously structured models: limitations of convex relaxation. In: IEEE Conference on Decision and Control, pp. 6019–6024 (2013)

  25. Pan, L., Chen, X.: Group sparse optimization for images recovery using capped folded concave functions. SIAM J. Imaging Sci. 14(1), 1–25 (2021)

    Article  MathSciNet  Google Scholar 

  26. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  27. Peng, D.T., Chen, X.J.: Computation of second-order directional stationary points for group sparse optimization. Optim. Methods Softw. 35(2), 348–376 (2020)

    Article  MathSciNet  Google Scholar 

  28. Phan, D.N., Le Thi, H.A.: Group variable selection via \(\ell _{p,0}\) regularization and application to optimal scoring. Neural Netw. 118, 220–234 (2019)

    Article  PubMed  Google Scholar 

  29. Poignard, B.: Asymptotic theory of the adaptive sparse group Lasso. Ann. Inst. Stat. Math. 72, 297–328 (2020)

    Article  MathSciNet  Google Scholar 

  30. Qin, Z., Scheinberg, K., Goldfarb, D.: Efficient block-coordinate descent algorithms for the group Lasso. Math. Program. Comput. 5(2), 143–169 (2013)

    Article  MathSciNet  Google Scholar 

  31. Richtörik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  32. Shechtman, Y., Beck, A., Beck, Y.C.: Gespar: efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Silver, M., Chen, P., Li, R.: Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts. PLoS Genet. 9(11), e1003939 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Simon, N., Friedman, J., Hastie, T.: A sparse-group Lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  Google Scholar 

  36. Vidyasagar, M.: Machine learning methods in the computational biology of cancer. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2167), 20140081 (2014)

    ADS  MathSciNet  CAS  Google Scholar 

  37. Van Den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wang, L., Chen, G., Li, H.: Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23(12), 1486–1494 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. Wang, W., Liang, Y., Xing, E.: Block regularized lasso for multivariate multi-response linear regression. In: Artificial Intelligence and Statistics, pp. 608–617 (2013)

  40. Wang, M., Li, L.: Learning from binary multiway data: probabilistic tensor decomposition and its statistical optimality. J. Mach. Learn. Res. 21(1), 6146–6183 (2020)

    MathSciNet  Google Scholar 

  41. Wu, Q.Q., Peng, D.T., Zhang, X.: Continuous exact relaxation and alternating proximal gradient algorithm for partial sparse and partial group sparse optimization problems. (2023). https://doi.org/10.13140/RG.2.2.32164.04484

  42. Yu, Y.L.: On decomposing the proximal map. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), vol. 1, pp. 91–99 (2013)

  43. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  44. Yuan, L., Liu, J., Ye, J.: Efficient methods for overlapping group Lasso. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2104–2116 (2013)

    Article  PubMed  Google Scholar 

  45. Zhang, C.H., Zhang, S.S.: Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc. Ser. B 76(1), 217–242 (2014)

    Article  MathSciNet  Google Scholar 

  46. Zhang, A., Xia, D.: Tensor SVD: statistical and computational limits. IEEE Trans. Inf. Theory 64(11), 7311–7338 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  47. Zhang, A., Han, R.: Optimal sparse singular value decomposition for high-dimensional high-order data. J. Am. Stat. Assoc. 114(528), 1708–1725 (2019)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, J., Yang, X.M., Li, G.X., Zhang, K.: A smoothing proximal gradient algorithm with extrapolation for the relaxation of \(\ell _0\) regularization problem. Comput. Optim. Appl. 84(3), 737–760 (2023)

    Article  MathSciNet  Google Scholar 

  49. Zhang, X., Peng, D.T.: Solving constrained nonsmooth group sparse optimization via group capped-\(\ell _1\) relaxation and group smoothing proximal gradient algorithm. Comput. Optim. Appl. 83(3), 801–844 (2022)

    Article  MathSciNet  Google Scholar 

  50. Zhang, Y.J., Zhang, N., Sun, D.F.: An efficient hessian based algorithm for solving large-scale sparse group Lasso problems. Math. Program. 179, 223–263 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (12261020), the Guizhou Provincial Science and Technology Program (ZK[2021]009), the Foundation for Selected Excellent Project of Guizhou Province for High-level Talents Back from Overseas ([2018]03), and the Research Foundation for Postgraduates of Guizhou Province (YJSCXJH[2020]085)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingtao Peng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Peng, D. & Zhang, X. Smoothing composite proximal gradient algorithm for sparse group Lasso problems with nonsmooth loss functions. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02034-2

Keywords

Mathematics Subject Classification

Navigation