Skip to main content
Log in

Global algorithm for effectively solving min-max affine fractional programs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This article investigates solving the min-max affine fractional programming problem (MAFPP), which arises in systems science and engineering. For globally solving the MAFPP, based on the outer space branching search, we design a branch-relaxation-bound algorithm. In the algorithm, we firstly convert the MAFPP into an equivalent problem with linear fractional constraints by introducing some auxiliary parameter variables. Next, to determine and update the lower bound during the branching search process, we construct the linear relaxation problem of the equivalence problem by using a new relaxation technique. The global convergence of the presented algorithm is verified. Also, by analyzing the algorithmic complexity, we give a maximum estimate of iteration times of the presented algorithm. Finally, computational comparison results are reported to demonstrate the effectiveness and feasibility of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Schaible, S., Shi, J.: Recent developments in fractional programming: single ratio and maxmin cale. In: Rroc. 3rd Intl. Conf. Nonlinear Anal. Convex Anal., 493–506 (2003)

  2. Almogy, Y., Levin, O.: Parametric analysis of a multistage stochastic shipping problem. Oper. Res. 69, 359–370 (1970)

    Google Scholar 

  3. Falk, J.E., Palocsay, S.W.: Optimizing the Sum of Linear Fractional Functions, Recent Advances in Global Optimization. Princeton University Press, Princeton (1992)

    Google Scholar 

  4. Maranas, C.D., Androulakis, I.P., Floudas, C.A., et al.: Solving long-term financial planning problems via global optimization. J. Econ. Dyn. Contr. 21, 1405–1425 (1997)

    Article  MathSciNet  Google Scholar 

  5. Konno, H., Watanabe, H.: Bond portfolio optimization problems and their applications to index tracking: a partial optimization approach. J. Oper. Res. Soc. Jpn. 39, 295–306 (1996)

    MathSciNet  Google Scholar 

  6. Schaible, S.: Fractional programming. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, 168th edn., pp. 495–608. Kluwer Academic Publishers, Dordrecht (1995)

    Chapter  Google Scholar 

  7. Bajona, C., Martinez, J.E.: Lower subdifferentiability in minimax fractional programming. Optimization 45, 1–12 (1999)

    Article  MathSciNet  Google Scholar 

  8. Ding, F.: Decomposition based fast least squares algorithm for output error systems. Signal Process. 93, 1235–1242 (2013)

    Article  Google Scholar 

  9. Feng, Q., Mao, H., Jiao, H.: A feasible method for a class of mathematical problems in manufacturing system. Key Eng. Mater. 460–461, 806–809 (2011)

    Article  Google Scholar 

  10. Feng, Q., Jiao, H., Mao, H.: A deterministic algorithm for min-max and max-min linear fractional programming problems. Int. J. Comput. Int. Syst. 4, 134–141 (2011)

    Google Scholar 

  11. Jiao, H., Ma, J., Shang, Y.: Image space branch-and-bound algorithm for globally solving minimax linear fractional programming problem. Pac. J. Optim. 18(1), 195–212 (2022)

    MathSciNet  Google Scholar 

  12. Barros, A.I., Frenk, J.B.G.: Generalized fractional programming and cutting plane algorithms. J. Optim. Theory Appl. 87, 103–120 (1995)

    Article  MathSciNet  Google Scholar 

  13. Freund, R.W., Jarre, F.: An interior-point method for fractional programs with convex constraints. Math. Prog. 67, 407–440 (1994)

    Article  MathSciNet  Google Scholar 

  14. Phuong, N.T.H., Tuy, H.: A unified monotonic approach to generalized linear fractional programming. J. Glob. Optim. 26, 229–259 (2003)

    Article  MathSciNet  Google Scholar 

  15. Wang, C.F., Jiang, Y., Shen, P.P.: A new branch-and-bound algorithm for solving minimax linear fractional programming. J. Math. 38(1), 113–123 (2018)

    Google Scholar 

  16. Smail, A., Karima, B., Ahmed, R.: Proximal bundle algorithms for nonlinearly constrained convex minimax fractional programs. J. Optim. Theory Appl. 179, 1–28 (2018)

    MathSciNet  Google Scholar 

  17. Jiao, H., Wang, F., Chen, Y.: An effective branch and bound algorithm for minimax linear fractional programming. J. Appl. Math. (2014). https://doi.org/10.1155/2014/160262

    Article  MathSciNet  Google Scholar 

  18. Ghazi, A., Roubi, A.: A DC approach for minimax fractional optimization programs with ratios of convex functions. Optim. Methods Softw. (2020). https://doi.org/10.1080/10556788.2020.1818234

    Article  Google Scholar 

  19. Jiao, H., Liu, S.: A new linearization technique for minimax linear fractional programming. Int. J. Comput. Math. 91(8), 1730–1743 (2014)

    Article  MathSciNet  Google Scholar 

  20. Jiao, H., Wang, W., Ge, L., Shen, P., Shang, Y.: Efficient algorithm for globally computing the min-max linear fractional programming problem. RAIRO-Oper. Res. 57(3), 1523–1537 (2023)

    Article  MathSciNet  Google Scholar 

  21. Jiao, H., Li, B.: Solving min-max linear fractional programs based on image space branch-and-bound scheme. Chaos Soliton. Fract. 164, 112682 (2022)

    Article  MathSciNet  Google Scholar 

  22. Edalatpanah, S.A., Abdolmaleki, E., Khalifa, H.A.E.W., Das, S.K.: Grab-n-Pull: a max-min fractional quadratic programming framework with applications in signal and information processing. Signal Process. 160, 1–12 (2019)

    Article  Google Scholar 

  23. Zhang, B., Gao, Y., Liu, X., Huang, X.: Interval division and linearization algorithm for minimax linear fractional program. Numer. Algor. 95, 839–858 (2024)

    Article  MathSciNet  Google Scholar 

  24. Bae, K.D., Piao, G.R., Hong, Z., Kim, D.S.: On minimax fractional semi-infinite programming problems with applications. Numer. Func. Anal. Opt. 42(13), 1522–1538 (2021)

    Article  MathSciNet  Google Scholar 

  25. Osmanpour, N., Keyanpour, M.: A hybrid method for solving non-convex min-max quadratic fractional problems under quadratic constraints. Optimization 71(14), 4107–4123 (2022)

    Article  MathSciNet  Google Scholar 

  26. Amaral, P.A., Bomze, I.M.: Nonconvex min-max fractional quadratic problems under quadratic constraints: copositive relaxations. J. Glob. Optim. 75, 227–245 (2019)

    Article  MathSciNet  Google Scholar 

  27. Jiao, H., Li, B., Shang, Y.: A novel affine relaxation-based algorithm for minimax affine fractional program. Asia-Pac. J. Oper. Res. (2023). https://doi.org/10.1142/S0217595923500367

    Article  Google Scholar 

  28. Jiao, H., Shang, Y., Chen, R.: A potential practical algorithm for minimizing the sum of affine fractional functions. Optimization 72(6), 1577–1607 (2023)

    Article  MathSciNet  Google Scholar 

  29. Jiao, H., Ma, J., Shen, P., Qiu, Y.: Effective algorithm and computational complexity for solving sum of linear ratios problem. J. Ind. Manag. Optim. 19(6), 4410–4427 (2023)

    Article  MathSciNet  Google Scholar 

  30. Jiao, H., Wang, W., Shang, Y.: Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problems. J. Comput. Appl. Math. 419, 114784 (2023)

    Article  MathSciNet  Google Scholar 

  31. Jiao, H., Li, B., Shang, Y.: An outer space approach to tackle generalized affine fractional program problems. J. Optim. Theory Appl. (2024). https://doi.org/10.1007/s10957-023-02368-0

    Article  Google Scholar 

  32. Jiao, H.W., Shang, Y.L.: Two-level linear relaxation method for generalized linear fractional programming. J. Oper. Res. Soc. China 11(3), 569–594 (2023)

    Article  MathSciNet  Google Scholar 

  33. Jiao, H., Shang, Y.: Image space branch-reduction-bound algorithm for globally solving the sum of affine ratios problem. J. Comput. Math. (2024). https://doi.org/10.4208/jcm.2203-m2021-0085

    Article  Google Scholar 

  34. Jiao, H., Li, B., Yang, W.: A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems. J. Glob. Optim. (2024). https://doi.org/10.1007/s10898-023-01358-w

    Article  Google Scholar 

  35. Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10, 383–421 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and the reviewers for their helpful suggestions and valuable comments.

Funding

This work was supported by the National Natural Science Foundation of China (11871196; 12071133; 12071112), China Postdoctoral Science Foundation (2017M622340), Key Scientific and Technological Research Projects in Henan Province (232102211085; 202102210147), Science and Technology Climbing Program of Henan Institute of Science and Technology (2018JY01), Key Research Projects of Higher Education Institutions in Henan Province (2 1A110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

A.1 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \displaystyle \left\{ \frac{3y_{1}+y_{2}-2y_{3}+0.8}{2y_{1}-y_{2}+y_{3}},\frac{4y_{1}-2y_{2}+y_{3}}{7y_{1}+3y_{2}-y_{3}}\right\} \\ {\mathrm{s. t.}}\ \ y_{1}+y_{2}-y_{3}\le 1,\\ \ \ \ \ \ \ -y_{1}+y_{2}-y_{3}\le -1,\\ \ \ \ \ \ \ 12y_{1}+5y_{2}+12y_{3}\le 34.8,\\ \ \ \ \ \ \ 12y_{1}+12y_{2}+7y_{3}\le 29.1,\\ \ \ \ \ \ \ \ -6y_{1}+y_{2}+y_{3}\le -4.1,\\ \ \ \ \ \ \ \ 1.0\le y_{1}\le 1.1,\ 0.55\le y_{2}\le 0.65,\ 1.35\le y_{3}\le 1.45. \end{array} \right. \end{aligned}$$

A.2 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \max \min \displaystyle \left\{ \frac{37y_{1}+73y_{2}+13}{13y_{1}+13y_{2}+13},\frac{63y_{1}-18y_{2}+39}{13y_{1}+26y_{2}+13}\right\} \\ {\mathrm{s. t.}}\ \ 5y_{1}-3y_{2}=3, \\ \ \ \ \ \ \ 1.5\le y_{1}\le 3. \end{array} \right. \end{aligned}$$

A.3 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \displaystyle \left\{ \frac{2y_{1}+2y_{2}-y_{3}+0.9}{y_{1}-y_{2}+y_{3}},\frac{3y_{1}-y_{2}+y_{3}}{8y_{1}+4y_{2}-y_{3}}\right\} \\ {\mathrm{s. t.}}\ \ y_{1}+y_{2}-y_{3}\le 1,\\ \ \ \ \ \ \ -y_{1}+y_{2}-y_{3}\le -1,\\ \ \ \ \ \ \ 12y_{1}+5y_{2}+12y_{3}\le 34.8,\\ \ \ \ \ \ \ 12y_{1}+12y_{2}+7y_{3}\le 29.1,\\ \ \ \ \ \ \ \ -6y_{1}+y_{2}+y_{3}\le -4.1,\\ \ \ \ \ \ \ 1.0\le y_{1}\le 1.2,\ \ 0.55\le y_{2}\le 0.65,\ \ 1.35\le y_{3}\le 1.45. \end{array} \right. \end{aligned}$$

A.4 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \left\{ \frac{3y_{1}+y_{2}-2y_{3}+0.8}{2y_{1}-y_{2}+y_{3}},\frac{4y_{1}-2y_{2}+y_{3}}{7y_{1}+3y_{2}-y_{3}},\frac{3y_{1}+2y_{2}-y_{3}+1.9}{y_{1}-y_{2}+y_{3}},\frac{4y_{1}-y_{2}+y_{3}}{8y_{1}+4y_{2}-y_{3}}\right\} \\ {\mathrm{s. t.}}\ \ y_{1}+y_{2}-y_{3}\le 1,\\ \ \ \ \ \ \ -y_{1}+y_{2}-y_{3}\le -1,\\ \ \ \ \ \ \ 12y_{1}+5y_{2}+12y_{3}\le 34.8,\\ \ \ \ \ \ \ 12y_{1}+12y_{2}+7y_{3}\le 29.1,\\ \ \ \ \ \ \ \ -6y_{1}+y_{2}+y_{3}\le -4.1,\\ \ \ \ \ \ \ 1.0\le y_{1}\le 1.2,\ \ 0.55\le y_{2}\le 0.65,\ \ 1.35\le y_{3}\le 1.45.\\ \end{array} \right. \end{aligned}$$

A.5 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \displaystyle \left\{ \frac{2.1y_{1}+2.2y_{2}-y_{3}+0.8}{1.1y_{1}-y_{2}+1.2y_{3}},\frac{3.1y_{1}-y_{2}+1.3y_{3}}{8.2y_{1}+4.1y_{2}-y_{3}}\right\} \\ {\mathrm{s. t.}}\ \ y_{1}+y_{2}-y_{3}\le 1,\\ \ \ \ \ \ \ -y_{1}+y_{2}-y_{3}\le -1,\\ \ \ \ \ \ \ 12y_{1}+5y_{2}+12y_{3}\le 40,\\ \ \ \ \ \ \ 12y_{1}+12y_{2}+7y_{3}\le 50,\\ \ \ \ \ \ \ \ -6y_{1}+y_{2}+y_{3}\le -2,\\ \ \ \ \ \ \ \ 1.0\le y_{1}\le 1.2, \ \ \ \ 0.55\le y_{2}\le 0.65, \ \ \ \ 1.35\le y_{3}\le 1.45. \end{array} \right. \end{aligned}$$

A.6 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \left\{ \frac{3y_{1}+4y_{2}-y_{3}+0.5}{2y_{1}-y_{2}+y_{3}+0.5},\frac{3y_{1}-y_{2}+3y_{3}+0.5}{9y_{1}+5y_{2}-y_{3}+0.5},\frac{4y_{1}-y_{2}+5y_{3}+0.5}{11y_{1}+6y_{2}-y_{3}},\frac{5y_{1}-y_{2}+6y_{3}+0.5}{12y_{1}+7y_{2}-y_{3}+0.9}\right\} \\ {\mathrm{s. t.}}\ \ y_{1}+y_{2}-y_{3}\le 1,\\ \ \ \ \ \ \ -y_{1}+y_{2}-y_{3}\le -1,\\ \ \ \ \ \ \ 12y_{1}+5y_{2}+12y_{3}\le 42,\\ \ \ \ \ \ \ 12y_{1}+12y_{2}+7y_{3}\le 55,\\ \ \ \ \ \ \ \ -6y_{1}+y_{2}+y_{3}\le -3,\\ \ \ \ \ \ \ 1.0\le y_{1}\le 2.0, \ \ \ \ 0.50\le y_{2}\le 2.0, \ \ \ \ 0.50\le y_{3}\le 2.0. \end{array} \right. \end{aligned}$$

A.7 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \left\{ \frac{3y_{1}+4y_{2}-y_{3}+0.9}{2y_{1}-y_{2}+y_{3}+0.5},\frac{3y_{1}-y_{2}+3y_{3}+0.5}{9y_{1}+5y_{2}-y_{3}+0.5},\frac{4y_{1}-y_{2}+5y_{3}+0.5}{11y_{1}+6y_{2}-y_{3}+0.9},\right. \\ \ \ \ \ \ \ \ \ \ \ \ \ \left. \frac{5y_{1}-y_{2}+6y_{3}+0.5}{12y_{1}+7y_{2}-y_{3}+0.9},\frac{6y_{1}-y_{2}+7y_{3}+0.6}{11y_{1}+6y_{2}-y_{3}+0.9}\right\} \\ {\mathrm{s. t.}}\ \ 2y_{1}+y_{2}-y_{3}\le 2,\\ \ \ \ \ \ \ -2y_{1}+y_{2}-2y_{3}\le -1,\\ \ \ \ \ \ \ 11y_{1}+6y_{2}+12y_{3}\le 45,\\ \ \ \ \ \ \ 11y_{1}+13y_{2}+6y_{3}\le 52,\\ \ \ \ \ \ \ \ -7y_{1}+y_{2}+y_{3}\le -2,\\ \ \ \ \ \ \ 1.0\le y_{1}\le 2.0, \ \ \ \ 0.35\le y_{2}\le 0.9, \ \ \ \ 1.0\le y_{3}\le 1.55. \end{array} \right. \end{aligned}$$

A.8 [15, 19].

$$\begin{aligned} \left\{ \begin{array}{ll} \min \max \left\{ \frac{5y_{1}+4y_{2}-y_{3}+0.9}{3y_{1}-y_{2}+2y_{3}+0.5},\frac{3y_{1}-y_{2}+4y_{3}+0.5}{9y_{1}+3y_{2}-y_{3}+0.5},\frac{4y_{1}-y_{2}+6y_{3}+0.5}{12y_{1}+7y_{2}-y_{3}+0.9},\right. \\ \ \ \ \ \ \ \ \ \ \ \ \ \left. \frac{7y_{1}-y_{2}+7y_{3}+0.5}{11y_{1}+9y_{2}-y_{3}+0.9},\frac{7y_{1}-y_{2}+7y_{3}+0.7}{11y_{1}+7y_{2}-y_{3}+0.8}\right\} \\ {\mathrm{s. t.}}\ \ 2y_{1}+2y_{2}-y_{3}\le 3,\\ \ \ \ \ \ \ -2y_{1}+y_{2}-3y_{3}\le -1,\\ \ \ \ \ \ \ 11y_{1}+7y_{2}+12y_{3}\le 47,\\ \ \ \ \ \ \ 13y_{1}+13y_{2}+6y_{3}\le 56,\\ \ \ \ \ \ \ \ -6y_{1}+2y_{2}+3y_{3}\le -1,\\ \ \ \ \ \ \ 1.0\le y_{1}\le 2.0, \ \ \ \ 0.35\le y_{2}\le 0.9, \ \ \ \ 1.0\le y_{3}\le 1.55. \end{array} \right. \end{aligned}$$

A.9.

$$\begin{aligned} \left\{ \begin{array}{ll} \min \ \max \ {\left\{ \frac{\sum \limits _{j=1}^{n} {\hat{d}}_{1j}y_{j}+{\hat{g}}_{1}}{\sum \limits _{j=1}^{n} {\hat{e}}_{1j}y_{j}+{\hat{h}}_{1}},\ldots ,\frac{\sum \limits _{j=1}^{n} {\hat{d}}_{pj}y_{j}+{\hat{g}}_{p}}{\sum \limits _{j=1}^{n} {\hat{e}}_{pj}y_{j}+{\hat{h}}_{p}}\right\} } \\ {\mathrm{s.\ t.}}\ \ \sum \limits _{j=1}^{n} {\hat{a}}_{qj}y_{j}\le {\hat{b}}_{q},\ q=1,2,\ldots ,{\hat{m}},\\ \ \ \ \ \ \ \ y_{j}\ge 0,\ j=1,2,\ldots ,n, \end{array} \right. \end{aligned}$$

where \({\hat{d}}_{ij}, {\hat{e}}_{ij}, {\hat{b}}_{k}\) and \({\hat{a}}_{qj}\) are all randomly produced from [0, 10]; \({\hat{g}}_{i}\) and \({\hat{h}}_{i}\) are all randomly produced from [0, 1].

A.10.

$$\begin{aligned} \left\{ \begin{array}{l} \min \ \max \ \left\{ \frac{\sum \limits _{j=1}^{n}{\widetilde{d}}_{1j}y_{j}+{\widetilde{f}}_{1}}{\sum \limits _{j=1}^{n}{\widetilde{c}}_{1j}y_{j}+{\widetilde{g}}_{1}}, \ldots , \frac{\sum \limits _{j=1}^{n}{\widetilde{d}}_{pj}y_{j}+{\widetilde{f}}_{p}}{\sum \limits _{j=1}^{n}{\widetilde{c}}_{pj}y_{j}+{\widetilde{g}}_{p}}\right\} \\ \mathrm {s.t.}\ \ \ \ \ \ \ \ \ \ \sum \limits _{j=1}^{n}{\widetilde{a}}_{qj}y_{j}\le {\widetilde{b}}_{q},\ \ q=1,2,\ldots ,{\hat{m}},\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_{j}\ge 0,\ \ j=1,\ldots ,n. \end{array} \right. \end{aligned}$$

where all \({\widetilde{d}}_{ij}\) and \({\widetilde{c}}_{ij}\) are the average number of distributions randomly generated from \([-0.1, 0.1]\), all \({\widetilde{a}}_{qj}\) are the average number of distributions randomly generated from [0.01, 1], all \({\widetilde{b}}_{q}=10\), all constant terms \({\widetilde{f}}_{i}\) and \({\widetilde{g}}_{i}\) of numerators and denominators of ratios satisfy that \(\sum \limits _{j=1}^{n}{\widetilde{c}}_{ij}y_{j}+{\widetilde{f}}_{i}>0\) and \(\sum \limits _{j=1}^{n}{\widetilde{d}}_{ij}y_{j}+{\widetilde{g}}_{i}>0, i=1,\ldots ,p\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Sun, Y., Wang, W. et al. Global algorithm for effectively solving min-max affine fractional programs. J. Appl. Math. Comput. 70, 1787–1811 (2024). https://doi.org/10.1007/s12190-024-02027-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02027-1

Keywords

Mathematics Subject Classification

Navigation