Skip to main content
Log in

Study on dynamic behavior of two fishery harvesting models: effects of variable prey refuge and imprecise biological parameters

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In natural systems, the change of ecological environment can indirectly affect some key biological parameters of species and their activity patterns, among which the imprecision of biological parameters and prey refuge behavior are two more obvious embodiments. The aim of this work is to investigate the triple effects of imprecision of biological parameters, prey refuge behavior and fishing activities on the dynamics of the system. Firstly, a novel Ivlev’s type fishery model incorporating with variable prey refuge and imprecise parameters is proposed. The dynamic properties of the fishery model under continuous fishing mode are analyzed, and the effects of variable prey refuge, imprecise index and fishing effort on the existence and stability of equilibrium are given. Moreover, the bionomic equilibrium and optimal fishing strategy are obtained. Secondly, from the perspective of reasonable exploitation of fishery resources, the weighted fishing strategy is introduced into the system, and the relevant weights and thresholds can be adjusted according to the actual demand, which is conducive to the sustainable development of fishery resources. The dynamic behavior of the fishery model under weighted fishing model is discussed, including the existence and stability of predator-extinction periodic solution and co-existence order-1 periodic solution under different fishing thresholds and weights, which not only provides a possibility to fishing species according to the period, but also ensures a certain robustness of the fishing strategy. Finally, to illustrate the theoretical results, numerical verifications for two harvesting models are presented to demonstrate the impact of variable prey refugia, imprecise biological parameters and fishing efforts on the behaviors of the system. The results of this study provide a reference for the scientific and reasonable exploitation and utilization of fishery resources in an imprecise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lotka, A.J.: Elements of physical biology. Am. J. Public Health 21, 341–343 (1926)

    Google Scholar 

  2. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Google Scholar 

  3. Ludwig, D., Johns, D.D., Holling, C.S.: Qualitative analysis of insect outbreak system: the spruce budworm and forest. J. Anim. Ecol. 47, 315–322 (1978)

    Google Scholar 

  4. Sivakumar, M., Sambath, M., Balachandran, K.: Stability and HOPF bifurcation analysis of a diffusive predator-prey model with Smith growth. Int. J. Biomath. 8(1), 1550013 (2015)

    MathSciNet  Google Scholar 

  5. Ivlev, V.S.: Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven (1961)

    Google Scholar 

  6. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. Suppl. 45, 5–60 (1965)

    Google Scholar 

  7. Kooij, R., Zegeling, A.: A predator-prey model with Ivlev’s functional response. J. Math. Anal. Appl. 198, 473–489 (1996)

    MathSciNet  Google Scholar 

  8. Sugie, J.: Two-parameter bifurcation in a predator-prey system of Ivlev type. J. Math. Anal. Appl. 217, 349–371 (1998)

    MathSciNet  Google Scholar 

  9. Kuang, T., Beretta. E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389-406 (1998)

  10. Cantrell, R.S., Cosner, C.: On the dynamics of predator-prey models with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)

    MathSciNet  Google Scholar 

  11. Xiao, H.B.: Global analysis of Ivlev’s type predator-prey dynamic systems. Appl. Math. Mech. 28, 461–470 (2007)

    MathSciNet  Google Scholar 

  12. Wang, H., Wang, W.: The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect. Chaos Solitons Fractals 38, 1168–1176 (2007)

    MathSciNet  Google Scholar 

  13. Ling, L., Wang, W.: Dynamics of a Ivlev-type predator-prey system with constant rate harvesting. Chaos Solitons Fractals 41, 2139–2153 (2009)

    MathSciNet  Google Scholar 

  14. Wang, H.L.: Dispersal permanence of periodic predator-prey model with Ivlev-type functional response and impulsive effects. Appl. Math. Model. 41, 2139–2153 (2010)

    MathSciNet  Google Scholar 

  15. Wang, X., Wei, J.: Diffusion-driven stability and bifurcation in a predator-prey system with Ivlev-type functional response. Appl. Anal. 92(4), 752–775 (2013)

    MathSciNet  Google Scholar 

  16. Wang, X., Wei, J.: Dynamics in a diffusive predator-prey system with strong Allee effect and Ivlev-type functional response. J. Math. Anal. Appl. 422(2), 1447–1462 (2015)

    MathSciNet  Google Scholar 

  17. Khan, M.S., Samreen, M., Ozair, M., Hussain, T., Elsayed, E.M., Gómez-Aguilar, J.F.: On the qualitative study of a two-trophic plant-herbivore model. J. Math. Biol. 85(4), 34 (2022). https://doi.org/10.1007/s00285-022-01809-0

    Article  MathSciNet  Google Scholar 

  18. Khan, M.S., Samreen, M., Gómez-Aguilar, J.F., Pérez-Careta, E.: On the qualitative study of a discrete-time phytoplankton-zooplankton model under the effects of external toxicity in phytoplankton population. Heliyon 8(12), e12415 (2022). https://doi.org/10.1016/j.heliyon.2022.e12415

    Article  Google Scholar 

  19. Smith, J.M.: Models in Ecology. Cambridge Univ. Press, Cambridge (1974)

    Google Scholar 

  20. Mcnair, J.N.: The effects of refuges on predator-prey interactions: a reconsideration. Theor. Popul. Biol. 29, 38–63 (1986)

    MathSciNet  Google Scholar 

  21. Ma, Z., Li, W., Zhao, Y., Wang, W., et al.: Effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges. Math. Biosci. 218, 73–79 (2009)

    MathSciNet  Google Scholar 

  22. Chang, X., Wei, J.: Stability and HOPF bifurcation in a diffusive predator-prey system incorporating a prey refuge. Math. Biosci. Eng. 10, 979 (2013)

    MathSciNet  Google Scholar 

  23. Moustafa, M., Mohd, M.H., Ismail, A.I., et al.: Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge. Chaos Solitons Fractals 109, 1–13 (2018)

    MathSciNet  Google Scholar 

  24. Kar, T.K.: Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. Comput. Appl. Math. 185, 19–33 (2006)

    MathSciNet  Google Scholar 

  25. Tian, Y., Guo, H., Sun, K.: Complex dynamics of two prey-predator harvesting models with prey refuge and interval-valued imprecise parameters. Math. Meth. Appl. Sci. 46(13), 14278–14298 (2023). https://doi.org/10.1002/mma.319

    Article  MathSciNet  Google Scholar 

  26. Mukherjee, D., Maji, C.: Bifurcation analysis of a holling type II predator-prey model with refuge. Chinese J. Phys. 65, 153–162 (2020)

    MathSciNet  Google Scholar 

  27. Barman, D., Roy, J., Alam, S.: Modelling hiding behaviour in a predator-prey system by both integer order and fractional order derivatives. Eco. Inform. 67, 101483 (2022)

    Google Scholar 

  28. Liu, M., Wang, K.: Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response. Commun. Nonlinear Sci. Numer. Simul. 16, 1114–1121 (2011)

    MathSciNet  Google Scholar 

  29. Lv, J., Wang, K.: Asymptotic properties of a stochastic predator-prey system with Holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 16, 4037–4048 (2011)

    MathSciNet  Google Scholar 

  30. Zhang, S., Yuan, S., Zhang, T.: Dynamic analysis of a stochastic eco-epidemiological model with disease in predators. Stud. Appl. Math. 149, 5–42 (2022)

    MathSciNet  Google Scholar 

  31. Xu, J., Yu, Z., Zhang, T., Yuan, S.: Near-optimal control of a stochastic model for mountain pine beetles with pesticide application. Stud. Appl. Math. 149, 678–704 (2022)

    MathSciNet  Google Scholar 

  32. Qi, H.K., Meng, X.Z.: Dynamics of a stochastic predator-prey model with fear effect and hunting cooperation. J. Appl. Math. Comput. 69, 2077–2103 (2023)

    MathSciNet  Google Scholar 

  33. Pal, D., Mahapatra, G.S., Samanta, G.P.: Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241, 181–187 (2013)

    MathSciNet  Google Scholar 

  34. Pal, D., Mahapatra, G.S., Samanta, G.P.: Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM. Nonlinear Dyn. 79, 1939–1955 (2015)

    Google Scholar 

  35. Pal, D., Mahapatra, G.S., Samanta, G.P.: Stability and bionomic analysis of fuzzy prey-predator harvesting model in presence of toxicity: a dynamic approach. Bull. Math. Biol. 78, 1493–1519 (2016)

    MathSciNet  Google Scholar 

  36. Pal, D., Mahapatra, G.S., Samanta, G.P.: New approach for stability and bifurcation analysis on predator-prey harvesting model for interval biological parameters with time delays. Comp. Appl. Math. 37, 3145–3171 (2018)

    MathSciNet  Google Scholar 

  37. Yu, X.W., Yuan, S.L., Zhang, T.H.: About the optimal harvesting of a fuzzy predator-prey system: a bioeconomic model incorporating prey refuge and predator mutual interference. Nonlinear Dyn. 94, 2143–2160 (2018)

    Google Scholar 

  38. Das, S., Mahato, P., Mahato, S.K.: A prey predator model in case of disease transmission via pest in uncertain environment. Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s12591-020-00551-7

    Article  Google Scholar 

  39. Xiao, Q.Z., Dai, B.X., Wang, L.: Analysis of a competition fishery model with interval-valued parameters: extinction, coexistence, bionomic equilibria and optimal harvesting policy. Nonlinear Dyn. 80, 1631–1642 (2015)

    MathSciNet  Google Scholar 

  40. Tian, Y., Li, C.X., Liu, J.: Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters. Chaos Solitons Fractals 167, 113084 (2023)

    MathSciNet  Google Scholar 

  41. Worm, B., Barbier, E.B., Beaumont, N., et al.: Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006)

    Google Scholar 

  42. Lv, Y.F., Yuan, R., Pei, Y.Z.: A prey-predator model with harvesting for fishery resource with reserve area. Appl. Math. Model. 37(5), 3048–3062 (2013)

    MathSciNet  Google Scholar 

  43. Hu, D.P., Cao, H.J.: Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting. Nonlinear Anal. Real. 33, 58–82 (2017)

    MathSciNet  Google Scholar 

  44. Ang, T.K., Safuan, H.M.: Dynamical behaviors and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting. Biosystems 202, 104357 (2021)

    Google Scholar 

  45. Meng, X.Y., Li, J.: Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting. Int. J. Biomath. 14, 2150024 (2021)

    MathSciNet  Google Scholar 

  46. Debnath, S., Majumdar, P., Sarkar, S., et al.: Global dynamics of a prey-predator model with holling type III functional response in the presence of harvesting. J. Biol. Syst. 30, 225–260 (2022)

    MathSciNet  Google Scholar 

  47. Nie, L.F., Teng, Z.D., Lin, H., Peng, J.G.: The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator. Biosystems 98, 67–72 (2009)

    Google Scholar 

  48. Guo, H.J., Chen, L.S., Song, X.Y.: Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property. Appl. Math. Comput. 271, 905–922 (2015)

    MathSciNet  Google Scholar 

  49. Tian, Y., Li, H.M.: The study of a predator-prey model with fear effect based on state-dependent harvesting strategy. Complexity 2022, 9496599 (2022). https://doi.org/10.1155/2022/9496599

    Article  Google Scholar 

  50. Tian, Y., Gao, Y., Sun, K.B.: Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy. Chaos Soliton Fract 164, 112597 (2022)

    MathSciNet  Google Scholar 

  51. Tian, Y., Gao, Y., Sun, K.B.: A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies. Math. Biosci. Eng. 20(2), 1558–1579 (2023)

    MathSciNet  Google Scholar 

  52. Tian, Y., Gao, Y., Sun, K.B.: Qualitative analysis of exponential power rate fishery model and complex dynamics guided by a discontinuous weighted fishing strategy. Commun. Nonlinear Sci. Numer. Simul. 118, 107011 (2023)

    MathSciNet  Google Scholar 

  53. Li, H.M., Tian, Y.: Dynamic behavior analysis of a feedback control predator-prey model with exponential fear effect and Hassell-Varley functional response. J. Franklin Inst. 360, 3479–3498 (2023)

    MathSciNet  Google Scholar 

  54. Liu, X.N., Chen, L.S.: Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos Soliton Fract 16(2), 311–320 (2004)

    MathSciNet  Google Scholar 

  55. Liu, B., Zhang, Y.J., Chen, L.S.: Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control. Chaos Soliton Fract 22(1), 123–134 (2004)

    MathSciNet  Google Scholar 

  56. Zhao, Z., Yang, L., Chen, L.: Impulsive perturbations of a predator-prey system with modified Leslie-Gower and Holling type II schemes. J. Appl. Math. Comput. 35, 119–134 (2011). https://doi.org/10.1007/s12190-009-0346-2

    Article  MathSciNet  Google Scholar 

  57. Jiang, G.R., Lu, Q.S., Qian, L.N.: Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos Soliton Fract 31(2), 448–461 (2007)

    MathSciNet  Google Scholar 

  58. Tian, Y., Sun, K.B., Chen, L.S.: Geometric approach to the stability analysis of the periodic solution in a semi-continuous dynamic system. Int. J. Biomath. 7, 1450018 (2014)

    MathSciNet  Google Scholar 

  59. Tang, S.Y., Pang, W.H., Cheke, R.A., et al.: Global dynamics of a state-dependent feedback control system. Adv. Differ. Equ. 2015, 322 (2015). https://doi.org/10.1186/s13662-015-0661-x

    Article  MathSciNet  Google Scholar 

  60. Tang, S.Y., Tang, B., Wang, A.L., Xiao, Y.N.: Holling II predator-prey impulsive semi-dynamic model with complex Poincaré map. Nonlinear Dyn. 81, 1575–1596 (2015)

    Google Scholar 

  61. Zhang, T.Q., Ma, W.B., Meng, X.Z., Zhang, T.H.: Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)

    MathSciNet  Google Scholar 

  62. Yang, J., Tang, S.Y.: Holling type II predator-prey model with nonlinear pulse as state-dependent feedback control. J. Comput. Appl. Math. 291, 225–241 (2016)

    MathSciNet  Google Scholar 

  63. Chen, L.S., Liang, X.Y., Pei, Y.Z.: The periodic solutions of the impulsive state feedback dynalical system. Commun. Math. Biol. Neurosci. 2018, 14 (2018)

    Google Scholar 

  64. Tang, S., Li, C., Tang, B., Wang, X.: Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map. Commun. Nonlinear Sci. Numer. Simul. 79, 104900 (2019)

    MathSciNet  Google Scholar 

  65. Zhang, Q., Tang, B., Cheng, T., Tang, S.: Bifurcation analysis of a generalized impulsive Kolmogorov model with applications to pest and disease control. SIAM J. Appl. Math. 80, 1796–1819 (2020)

    MathSciNet  Google Scholar 

  66. Zhang, Q., Tang, S., Zou, X.: Rich dynamics of a predator-prey system with state-dependent impulsive controls switching between two means. J. Differ. Equ. 364, 336–377 (2023)

    MathSciNet  Google Scholar 

  67. Li, W., Ji, J., Huang, L.: Global dynamic behavior of a predator-prey model under ratio-dependent state impulsive control. Appl. Math. Model. 77, 1842–1859 (2020)

    MathSciNet  Google Scholar 

  68. Xu, J., Huang, M., Song, X.: Dynamical analysis of a two-species competitive system with state feedback impulsive control. Int. J. Biomath. 13(05), 2050007 (2020)

    MathSciNet  Google Scholar 

  69. Xu, J., Huang, M., Song, X.: Dynamics of a guanaco-sheep competitive system with unilateral and bilateral control. Nonlinear Dyn. 107(3), 3111–3126 (2022)

    Google Scholar 

  70. Zhang, Q., Tang, S.: Bifurcation analysis of an ecological model with nonlinear state-dependent feedback control by Poincaré map defined in phase set Commun. Nonlinear Sci. Numer. Simul. 108, 106212 (2022)

    Google Scholar 

  71. Pontryagin, L.S.: The Mathematical Theory of Optimal Processes. CRC press (1987)

  72. Jan, M.N., Zaman, G., Ali, N., Ahmad, I., Shah, Z.: Optimal control application to the epidemiology of HBV and HCV co-infection. Int. J. Biomath. 15(03), 2150101 (2022)

    MathSciNet  Google Scholar 

  73. Zhang, Z.Z., Rahman, G., Gómez-Aguilar, J.F., Torres-Jiménez, J.: Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies. Chaos Soliton Fract 160, 112194 (2022)

    MathSciNet  Google Scholar 

  74. Liu, R., Liu, G.: Complex dynamics and optimal harvesting for a stochastic food-web model with intraguild predation and time delays. Int. J. Biomath. 15(07), 2250050 (2022)

    MathSciNet  Google Scholar 

  75. Chien, F.S., Nik, H.S., Shirazian, M., Gómez-Aguilar, J.F.: The global stability and optimal control of the Covid-19 epidemic model. Int. J. Biomath. 17(1), 2350002 (2024). https://doi.org/10.1142/S179352452350002X

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 12071407, 12191193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Yuan.

Ethics declarations

conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, G., Yuan, T., Kaibiao, S. et al. Study on dynamic behavior of two fishery harvesting models: effects of variable prey refuge and imprecise biological parameters. J. Appl. Math. Comput. 69, 4243–4268 (2023). https://doi.org/10.1007/s12190-023-01925-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01925-0

Keywords

Mathematics Subject Classification

Navigation