Skip to main content
Log in

The generalized 4-connectivity of locally twisted cubes

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The hypercube is one of the most famous interconnection networks as the topology structure for parallel and distributed systems because of its many good properties. The locally twisted cube, an important variant of hypercube, has lower diameter compared with the same dimensional hypercube, and thus attracts much interesting of many researchers. For \(L \subseteq V(G)\), the L-tree means a tree joining each node of L. The L-trees \(T_1, T_2, \ldots , T_{l}\) are internally disjoint if \(V(T_a) \cap V(T_b)=L\) and \(E(T_a) \cap E(T_b)=\emptyset \) for any two different integers \(a, b \in \{1, 2, \ldots , l\}\). Let \(\kappa (L)=\max \{l \mid T_1, T_2, \ldots , T_l\) are internally disjoint L-trees \(\}\) and \(\kappa _l(G)=\)min\(\{\kappa (L) \mid L \subseteq V(G)\) and \(\vert L \vert =l\}\). For a graph G, the generalized l-connectivity, denoted by \(\kappa _l(G)\), is an extension of connectivity to better evaluate the fault-tolerance of networks. For the n-dimensional locally twisted cube, in this paper, we show that \(\kappa _4(LTQ_n)=n-1\), where \(n \ge 2\). Since \(\kappa _4(LTQ_n) \le \delta (LTQ_n)-1\) and \(LTQ_n\) is n-regular, our result is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data available.

References

  1. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC Press (2008)

    MATH  Google Scholar 

  2. Leighton, F.T.: Introduction to Parallel Algorithms and Architecture: Arrays Trees Hypercubes. Morgan Kaufman, San Mateo (1992)

    MATH  Google Scholar 

  3. Xu, J.-M.: Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dor drecht (2001)

    MATH  Google Scholar 

  4. Vaidya, A.S., Rao, P.S.N., Shankar, S.R.: A class of hypercube-like networks. In: Proceedings of the 5th IEEE symposium on parallel and distributed processing. Dallas, USA, pp 800–805 (1993)

  5. Yang, X., Evans, D.J., Megson, G.M.: The locally twisted cubes. Int. J. Comput. Math. 82(4), 401–413 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Ma, M.-J., Xu, J.-M.: Panconnectivity of locally twisted cubes. Appl. Math. Lett. 19, 673–677 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Ma, M.-J., Xu, J.-M.: Weak edge-pancyclicity of locally twisted cubes. ARS Comb. 89, 89–94 (2008)

    MATH  Google Scholar 

  8. Xu, X., Huang, Y., Zhang, P., Zhang, S.: Fault-tolerant vertex-pancyclicity of locally twisted cubes \(LTQ_n\). J. Parallel Distrib. Comput. 88, 57–62 (2016)

    Google Scholar 

  9. Chang, J.-M., Chen, X.-R., Yang, J.-S., Wu, R.-Y.: Locally exchanged twisted cubes: connectivity and super connectivity. Inf. Process. Lett. 116, 460–466 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Chang, X., Ma, J., Yang, D.-W.: Symmetric property and reliability of locally twisted cubes. Discret. Appl. Math. 288, 257–269 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, D.: Hamiltonian cycles passing through prescribed edges in locally twisted cubes. J. Interconnect. Netw. 22(2), 2150020 (2022)

    Google Scholar 

  12. Cheng, D.: Embedding mutually edge-disjoint cycles into locally twisted cubes. Theor. Comput. Sci. 929, 11–17 (2022)

    MathSciNet  MATH  Google Scholar 

  13. Guo, L., Su, G., Lin, W., Chen, J.: Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334, 401–406 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Han, Y., Fan, J., Zhang, S., Yang, J., Qian, P.: Embedding meshes into locally twisted cubes. Inf. Sci. 180, 3794–3805 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Hsieh, S.-Y., Tu, C.-J.: Constructing edge-disjoint spanning trees in locally twisted cubes. Theor. Comput. Sci. 410, 926–932 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Hsieh, S.-Y., Huang, H.-W., Lee, C.-W.: \(\{2, 3\}\)-restricted connectivity of locally twisted cubes. Theor. Comput. Sci. 615, 78–90 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Kung, T.-L., Teng, Y.-H., Lin, C.-K.: Super fault-tolerance assessment of locally twisted cubes based on the structure connectivity. Theor. Comput. Sci. 889, 25–40 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Lin, J.-C., Yang, J.-S., Hsu, C.-C., Chang, J.-M.: Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes. Inf. Process Lett. 110, 414–419 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Pai, K.-J., Chang, J.-M.: Improving the diameters of completely independent spanning trees in locally twisted cubes. Inf. Process. Lett. 141, 22–24 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Ren, Y., Wang, S.: The \(g\)-good-neighbor diagnosability of locally twisted cubes. Theor. Comput. Sci. 697, 91–97 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Shalini, A.J., Abraham, J., Arockiaraj, M.: A linear time algorithm for embedding locally twisted cube into grid network to optimize the layout. Discret. Appl. Math. 286, 10–18 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Shang, H., Sabir, E., Meng, J., Guo, L.: Characterizations of optimal component cuts of locally twisted cubes. Bull. Malays. Math. Sci. Soc. 43, 2087–2103 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Wei, C.-C., Hsieh, S.-Y.: \(h\)-restricted connectivity of locally twisted cubes. Discret. Appl. Math. 217, 330–339 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Yang, X., Megson, G.M., Evans, D.J.: Locally twisted cubes are 4-pancyclic. Appl. Math. Lett. 17, 919–925 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Zhao, L., Xu, X., Bai, S., Zhang, H., Yang, Y.: The crossing number of locally twisted cubes \(LTQ_n\). Discret. Appl. Math. 247, 407–418 (2018)

    MATH  Google Scholar 

  26. Chartrand, G., Kapoor, S.F., Lesniak, L., Lick, D.R.: Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 2, 1–6 (1984)

    Google Scholar 

  27. Lin, S., Zhang, Q.: The generalized 4-connectivity of hypercubes. Discret. Appl. Math. 220, 60–67 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, S.-L., Hao, R.-X.: The generalized 4-connectivity of exchanged hypercubes. Appl. Math. Comput. 347, 342–353 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)

    MathSciNet  MATH  Google Scholar 

  30. Li, S., Li, X.: Note on the hardness of generalized connectivity. J. Comb. Optim. 24, 389–396 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Gao, H., Lv, R., Wang, K.: Two lower bounds for generalized 3-connectivity of Cartesian product graphs. Appl. Math. Comput. 338, 305–313 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Li, S., Zhao, Y., Li, F., Gu, R.: The generalized 3-connectivity of the Mycielskian of a graph. Appl. Math. Comput. 347, 882–890 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Wei, C., Hao, R.-X., Chang, J.-M.: The reliability analysis based on the generalized connectivity in balanced hypercubes. Discret. Appl. Math. 292, 19–32 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Wei, C., Hao, R.-X., Chang, J.-M.: Packing internally disjoint Steiner trees to compute the \(\kappa _3\)-connectivity in augmented cubes. J. Parallel Distrib. Comput. 154, 42–53 (2021)

    Google Scholar 

  35. Li, S., Tu, J., Yu, C.: The generalized 3-connectivity of star graphs and bubble-sort graphs. Appl. Math. Comput. 274, 41–46 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y., Gu, R., Lei, H.: The generalized connectivity of the line graph and the total graph for the complete bipartite graph. Appl. Math. Comput. 347, 645–652 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Zhao, S.-L., Hao, R.-X., Wu, J.: The generalized 3-connectivity of some regular networks. J. Parallel Distrib. Comput. 133, 18–29 (2019)

    Google Scholar 

  38. Zhao, S.-L., Hao, R.-X.: The generalized connectivity of bubble-sort star graphs. Int. J. Found. Comput. S. 30(5), 793–809 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Zhao, S.-L., Hao, R.-X.: The generalized connectivity of alternating group graphs and \((n, k)\)-star graphs. Discret. Appl. Math. 251, 310–321 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Li, H., Ma, Y., Yang, W., Wang, Y.: The generalized 3-connectivity of graph products. Appl. Math. Comput. 295, 77–83 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Wang, J.: The generalized 3-connectivity of two kinds of regular networks. Theor. Comput. Sci. 893, 183–190 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Zhao, S.-L., Hao, R.-X., Wu, J.: The generalized 4-connectivity of hierarchical cubic networks. Discret. Appl. Math. 289, 194–206 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Zhao, S.-L., Hao, R.-X., Cheng, E.: Two kinds of generalized connectivity of dual cubes. Discret. Appl. Math. 257, 306–316 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Li, C., Lin, S., Li, S.: The 4-set tree connectivity of \((n, k)\)-star networks. Theor. Comput. Sci. 844, 81–86 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Li, S.: Some Topics on Generalized Connectivity of Graphs, Ph.D. Thesis (Nankai University, 2012)

  46. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The author expresses her gratitude to the anonymous referees for their constructive suggestions which greatly improve the original manuscript. This work was supported by China Scholarship Council [CSC NO. 202006785015], and was completed during the period of the author visiting Nanyang Technological University with financial support under this grant. This work was also supported by Guangdong Basic and Applied Basic Research Foundation [Grant Number 2023A1515011049].

Author information

Authors and Affiliations

Authors

Contributions

DC contributed to the study conception and design, wrote, read, revised and approved the manuscript.

Corresponding author

Correspondence to Dongqin Cheng.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D. The generalized 4-connectivity of locally twisted cubes. J. Appl. Math. Comput. 69, 3095–3111 (2023). https://doi.org/10.1007/s12190-023-01878-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01878-4

Keywords

Mathematics Subject Classification

Navigation