Skip to main content
Log in

Global attractor and threshold dynamics of a reaction–diffusion population model in a polluted environment

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper describes a population model in a polluted environment with heterogeneous parameters and a reaction–diffusion mechanism. We establish the existence of positive solution and a global attractor of the model. By defining the basic reproduction number \(\mathcal {R}_0\), the threshold dynamics for the extinction or persistence of the population are discussed. The global attractivity of the unique positive equilibrium \(E^*\) is obtained by establishing the Lyapunov function. Finally, some numerical simulations are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeneli, L., Daci, N., et al.: Impact of environmental pollution on human health of the population which lives nearby Kosovo thermopower plants. Indoor Built Environ. 20(4), 479–482 (2011)

    Article  Google Scholar 

  2. Yang, K., Teng, M., et al.: Human activities and the natural environment have induced changes in the PM2.5 concentrations in Yunnan Province, China, over the past 19 years. Environ. Pollut. 265(Pt B), 114878 (2020)

    Article  Google Scholar 

  3. Miao, X., Tang, Y., et al.: The latent causal chain of industrial water pollution in China. Environ. Pollut. 196, 473–477 (2015)

    Article  Google Scholar 

  4. Bell, I. P., Meager, J., et al.: Green turtle (Chelonia mydas) population demographics at three chemically distinct foraging areas in the northern Great Barrier Reef. Sci. Total Environ. 652(FEB.20), 1040–1050 (2019)

    Article  Google Scholar 

  5. Sarkar, K., Khajanchi, S., Mali, P. C., et al.: Rich dynamics of a predator-prey system with different kinds of functional responses. Complexity 1–19 (2020)

  6. Subhas, K., Nieto, J.J.: Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Appl. Math. Comput. 340, 180–205 (2019)

    MATH  Google Scholar 

  7. Ghosh, D., Khajanchi, S., Mangiarottiet, S., et al.: How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment? BioSystems (2017)

  8. Hallam, T.G., Clark, C.E., et al.: Effects of toxicant on populations: a qualitative approach I. Equilib. Environ. Expo. Ecol. Model. 18(3–4), 291–304 (1983)

    Google Scholar 

  9. Hallam, T. G., Clark, C. E., et al.: Effects of toxicant on populations: a qualitative approach II. First order kinetics. J. Math. Biol. 18(1), 25–37 (1983)

    Article  MATH  Google Scholar 

  10. He, J., Wang, K.: The survival analysis for a single-species population model in a polluted environment. Appl. Math. Model. 31(10), 2227–2238 (2007)

    Article  MATH  Google Scholar 

  11. Lan, G., Wei, C., et al.: Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments. Phys. A 521, 828–842 (2019)

    Article  MATH  Google Scholar 

  12. Liu, M., Wang, K., et al.: Long term behaviors of stochastic single-species growth models in a polluted environment. Appl. Math. Model. 35(9), 4438–4448 (2011)

    Article  MATH  Google Scholar 

  13. Dai, X., Wang, S., et al.: Survival analysis of a stochastic delay single-species system in polluted environment with psychological effect and pulse toxicant input. Adv. Differ. Equ. 2020(1), 1–16 (2020)

    Article  Google Scholar 

  14. Liu, M., Wang, K.: Survival analysis of stochastic single-species population models in polluted environments. Ecol. Model. 220(9–10), 1347–1357 (2009)

    Article  Google Scholar 

  15. Liu, M., Wang, K.: Persistence and extinction of a stochastic single-species population model in a polluted environment with impulsive toxicant input. Electron. J. Differ. Equ. 230, 823–840 (2013)

    MATH  Google Scholar 

  16. Liu, M., Wang, K.: Survival analysis of a stochastic single-species population model with jumps in a polluted environment. Int. J. Biomath. 9(01), 207–221 (2016)

    Article  MATH  Google Scholar 

  17. He, J., Wang, K.: The survival analysis for a population in a polluted environment. Nonlinear Anal. Real World Appl. 10(3), 1555–1571 (2009)

    Article  MATH  Google Scholar 

  18. Mei, Dong, et al.: The effects of impulsive toxicant input on a single-species population in a small polluted environment. Math. Biosci. Eng. 16(6), 8179–8194 (2019)

    Article  MATH  Google Scholar 

  19. Liu, B., Chen, L., et al.: The effects of impulsive toxicant input on a population in a polluted environment. J. Biol. Syst. 11(3), 265–274 (2003)

    Article  MATH  Google Scholar 

  20. Buonomo, B., Liddo, A.D., et al.: A diffusive-convective model for the dynamics of population-toxicant interactions: some analytical and numerical results. Math. Biosci. 157(1–2), 37–64 (1999)

    Article  Google Scholar 

  21. Meyer, A. D., Hastings, A., et, al.: Spatial heterogeneity of mortality and diffusion rates determines larval delivery to adult habitats for coastal marine populations. Theor. Ecol. 1–17 (2021)

  22. Kang, T., Du, Y.Y., et al.: Approximation of invariant measure for a stochastic population model with Markov chain and diffusion in a polluted environment. Math. Biosci. Eng. 17(6), 6702–6719 (2020)

    Article  MATH  Google Scholar 

  23. Hu, J., Zhang, Q., et al.: Finite-time stability and optimal control of a stochastic reaction-diffusion model for Alzheimers disease with impulse and time-varying delay. Appl. Math. Model. 102, 511–539 (2022)

    Article  Google Scholar 

  24. Subhas, K., Nieto, J.J.: Spatiotemporal dynamics of a glioma immune interaction model. Sci. Rep. 11, 22385 (2021)

    Article  Google Scholar 

  25. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  26. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  27. Martin, R.H., Smith, H.L.: Abstract functional differential equtions and reaction–diffusion systems. Trans. Am. Math. Soc. 321(1), 1–44 (1990)

    Google Scholar 

  28. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62(4), 543–568 (2011)

    Article  MATH  Google Scholar 

  29. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1989)

    Google Scholar 

  30. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)

    Article  MATH  Google Scholar 

  31. Sarkar, K., Khajanchi, S.: Modeling and forecasting of the COVID-19 pandemic in India. Chaos Solitons Fractals (2020)

  32. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MATH  Google Scholar 

  33. Allen, L.J.S., Bolker, B.M., et al.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dynam. Syst. 21, 1–20 (2008)

    Article  MATH  Google Scholar 

  34. Lou, Y., Nagylaki, T.: Evolution of a semilinear parabolic system for migration and selection without dominance. J. Differ. Equ. 225(2), 624–665 (2006)

    Article  MATH  Google Scholar 

  35. Thieme, H.R.: Convergence results and a Poincar-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30(7), 755–763 (1992)

    Article  MATH  Google Scholar 

  36. Smith, H.L., Zhao, X.-Q.: Robust persistence for semidynamical systems. Nonlinear Anal. 47(9), 6169–6179 (2015)

    Article  MATH  Google Scholar 

  37. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37(1), 251–275 (2005)

    Article  MATH  Google Scholar 

  38. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. CRC Press, Cambridge (1985)

    MATH  Google Scholar 

  39. Cui, R., Lam, K.-Y., et al.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    Article  MATH  Google Scholar 

  40. Wang, J., Wu, X.: Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates. J. Dyn. Differ. Equ. 2, 1–37 (2021)

    Google Scholar 

  41. Smith, H.L., Thieme, H.R.: Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, vol. 118. American Mathematical Society, Providence (2011)

    Google Scholar 

  42. Li, W., Zhang, Q., et al.: Numerical approximation of a stochastic age-structured population model in a polluted environment with Markovian switching. Numer. Methods Partial Differ. Equ. (2020)

  43. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  44. Hess, P.: Periodic-parabolic boundary value problems and positivity. Bull. Lond. Math. Soc. 24(6) (1992)

Download references

Acknowledgements

The research was supported by the Ningxia Key R &D Program Key Projects (No. 2021BEG03012) and the Natural Science Foundation of China (No. 12161068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qimin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.2

Proof

We first prove the existence and uniqueness of the equilibrium state. From the second equation of system (3), the equilibrium state \(W_2\) satisfies

$$\begin{aligned} \mathcal {L}W_2(x)=-d_3\Delta W_2(x)+h(x)W_2(x). \end{aligned}$$

As \(h(x)>0\), we know that the eigenvalue of \(\mathcal {L}\) is positive. The operator \(\mathcal {L}\) is invertible, and so the second equation of system (3) admits a unique positive equilibrium state \(C_e^*(x)\). From Assumption 2, we know that \(u(x,t)>0\), and so

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}-d_3\Delta C_e^*(x)+h(x)C_e^*(x)>0,~x\in \Omega , t>0,\\ &{}\frac{\partial C_e^*(x)}{\partial v}=0,~~~~~~~~~~~~~~~~~~~~~~~x\in \partial \Omega , t>0. \end{array}\right. } \end{aligned} \end{aligned}$$

Using the strong extremum principle [43, Theorem 4], we have \(C_e^*(x)>0\).

Next, we prove the global stability of \(C_e^*(x)\). Define the Lyapunov functional as \(\mathcal {L}_2:C({\overline{\Omega }},\mathbb {R})\rightarrow \mathbb {R}\),

$$\begin{aligned} \mathcal {L}_2(W_2(x,t))=\int _\Omega (W_2(x,t)-C_e^*(x))^2dx. \end{aligned}$$

From Green’s formula and the Neumann boundary condition, we obtain

$$\begin{aligned} \mathcal {L}_2'(t)= & {} -2d_3\int _\Omega |\nabla (W_2(x,t)-C_e^*(x))|^2dx\\&-2\int _\Omega h(x)(W_2(x,t)-C_e^*(x))^2dx\le 0. \end{aligned}$$

Furthermore, \(\mathcal {L}_2'(t)=0\) if and only if \(W_2(x,t)\equiv C_e^*(x)\). Then, from LaSalle’s invariance principle, we know that \(C_e^*(x)\) is globally asymptotically stable in \(C({\overline{\Omega }},\mathbb {R})\). The global asymptotic stability of \(C_0^*(x)\) can be obtained in a similar way. This completes the proof. \(\square \)

Appendix B: Proof of Lemma 4.2

Proof

From a well-known fact, there exists a positive function \(\Psi \in C^2({\overline{\Omega }})\) such that

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}d_1\Delta \Psi +\frac{r_0(x)}{\mathcal {R}_0}\Psi -r_1(x)C_0^*(x)\Psi =0,~x\in \Omega , t>0,\\ &{}\frac{\partial \Psi }{\partial v}=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x\in \partial \Omega , t>0. \end{array}\right. } \end{aligned} \end{aligned}$$
(23)

Let \(\varphi _0\) be the positive eigenfunction corresponding to \(\lambda _0\), that is,

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}d_1\Delta \varphi _0+r_0(x)\varphi _0-r_1(x)C_0^*(x)\varphi _0=\lambda _0\varphi _0,~x\in \Omega ,\\ &{}\frac{\partial \varphi _0}{\partial v}=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x\in \partial \Omega . \end{array}\right. } \end{aligned} \end{aligned}$$
(24)

Multiplying Eq. (23) by \(\varphi _0\) and Eq. (24) by \(\Psi \), and then integrating the resulting expressions on \(\Omega \), we have

$$\begin{aligned} \int _\Omega d_1\nabla \varphi _0\cdot \nabla \Psi dx+\int _\Omega \frac{r_0(x)}{\mathcal {R}_0}\Psi \varphi _0dx-\int _\Omega r_1(x)C_0^*(x)\Psi \varphi _0dx=0, \end{aligned}$$

and

$$\begin{aligned} \int _\Omega d_1\nabla \Psi \cdot \nabla \varphi _0dx+\int _\Omega r_0(x)\varphi _0\Psi dx-\int _\Omega r_1(x)C_0^*(x)\varphi _0\Psi dx=\int _\Omega \lambda _0\varphi _0\Psi dx, \end{aligned}$$

respectively. Subtracting one from the other, we obtain

$$\begin{aligned} \left( 1-\frac{1}{\mathcal {R}_0}\right) \int _\Omega r_0(x)\Psi \varphi _0dx=\lambda _0\int _\Omega \varphi _0\Psi dx. \end{aligned}$$

As the integrals on both sides are positive, \(1-\frac{1}{\mathcal {R}_0}\) and \(\lambda _0\) have the same sign. This completes the proof. \(\square \)

Appendix C: Proof of Lemma 4.3

Proof

From the first equation of system (2), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial P(x,t)}{\partial t}\ge d_1\Delta P(x,t)-P(x,t)(r_1(x)K_2+f(x)P(x,t)),~x\in {\overline{\Omega }}, t>0,\\ \frac{\partial P(x,t)}{\partial v}=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x\in \partial \Omega , t>0. \end{array}\right. } \end{aligned}$$

If \(P(x,t;\phi )\not \equiv 0\), for some \(t_0>0\), the strong maximum principle [43, Theorem 4] and the Hopf boundary lemma [44, Proposition 13.1] imply that \(P(\cdot ,t;\phi )>0,x\in {\overline{\Omega }}, \forall t>t_0\).

From the last two equations of system (2), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial C_0(x,t)}{\partial t}\ge d_2\Delta C_0(x,t)+{\tilde{k}}C_e(x,t)-({\bar{l}}+{\bar{m}})C_0(x,t),~~~~~~x\in {\overline{\Omega }}, t>0,\\ \frac{\partial C_e(x,t)}{\partial t}\ge d_3\Delta C_e(x,t)+b-({\bar{g}}K_3+{\bar{h}})C_e(x,t),~~~~~~~~~~~~~x\in {\overline{\Omega }}, t>0,\\ \frac{\partial C_0(x,t)}{\partial t}=0,\frac{\partial C_e(x,t)}{\partial t}=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x\in \partial \Omega , t>0. \end{array}\right. } \end{aligned}$$

Using the comparison principle, we obtain

$$\begin{aligned} \liminf \limits _{t\rightarrow \infty } C_0(\cdot ,t;\phi )\ge \frac{{\tilde{k}}b}{({\bar{g}}K_3+{\bar{h}})({\bar{l}}+{\bar{m}})}, \end{aligned}$$

and

$$\begin{aligned} \liminf \limits _{t\rightarrow \infty } C_e(\cdot ,t;\phi )\ge \frac{b}{{\bar{g}}K_3+{\bar{h}}}, \end{aligned}$$

uniformly for \(x\in {\overline{\Omega }}\). This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, A., Zhang, Q. Global attractor and threshold dynamics of a reaction–diffusion population model in a polluted environment. J. Appl. Math. Comput. 69, 989–1014 (2023). https://doi.org/10.1007/s12190-022-01781-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01781-4

Keywords

Mathematics Subject Classification

Navigation