Skip to main content
Log in

Stability and Hopf bifurcation analysis of flux neuron model with double time delays

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A flux neuron model with double time delays was developed by introducing a memristor. The first time delay is added to the memristor and another time delay is formed by the interaction of fast and slow variables in the HR model. The local stability and Hopf bifurcation of the equilibrium are obtained in four different combinations of time delays. The direction, stability, and periodic solution of the Hopf bifurcation are proved by the centre manifold theorem. Furthermore, using numerical simulations, the two-parameter bifurcation diagrams are obtained to give insight into the effect of time delays on chaos-mediated mixed-mode oscillations and non-chaos-mediated mixed-mode oscillations of the flux neuron model. Changing in time delays can lead to an increase or decrease in the number of periods, disappearance, chaos, and other rich phenomena in the system membrane voltage. These phenomena provide a satisfactory explanation for the abnormal brain discharges caused by magnetic field and time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  2. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(1), 445–466 (1961)

    Article  MathSciNet  Google Scholar 

  3. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  4. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Article  Google Scholar 

  5. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Cell 35(1), 193–213 (1981)

    Google Scholar 

  6. Chay, T.R., Keizer, J.: Minimal model for membrane oscillations in the pancreatic Beta-Cell. Biophys. J. 42(2), 181–190 (1983)

    Article  Google Scholar 

  7. Moujahid, A., D’anjou, A., Torrealdea, F.J., Torrealdea, F.: Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons. Chaos Solitons Fract. 44(11), 929–933 (2011)

    Article  Google Scholar 

  8. Rech, P.C.: Dynamics in the parameter space of a neuron model. Chin. Phys. Lett. 29(6), 60506–60509 (2012)

    Article  Google Scholar 

  9. Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81(4), 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  10. Lv, M., Wang, C.N., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  11. Wu, F.Q., Wang, C.N., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep-UK 6(1), 8–19 (2016)

    Google Scholar 

  12. Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurcat. Chaos. 27(2), 1750030–1750041 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tang, K.M., Wang, Z.L., Shi, X.R.: Electrical activity in a time-delay four-variable neuron model under electromagnetic induction. Front. Comput. Neurosc. 11(1), 105–112 (2017)

    Article  Google Scholar 

  14. Wang, C.N., Tang, J., Ma, J.: Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur. Phys. J-Spec Top. 228(10), 1907–1924 (2019)

    Article  Google Scholar 

  15. Yao, C.: Synchronization and multistability in the coupled neurons with propagation and processing delays. Nonlinear Dyn. 101(4), 1–11 (2020)

    Article  Google Scholar 

  16. Ma, S.Q.: Hopf bifurcation of a type of neuron model with multiple time delays. Int. J. Bifurcat. Chaos. 29(12), 1950163–1950178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Protachevicz, P.R., Borges, F.S., Iarosz, K.C., Baptista, M.S., Lameu, E.L.: Influence of delayed conductance on neuronal synchronization. Front. Physiol 11(3), 1053–1061 (2020)

    Article  Google Scholar 

  18. Xiao, M., Zheng, W.X., Jiang, G.P., Cao, J.D.: Qualitative analysis and bifurcation in a neuron system with memristor characteristics and time delay. IEEE. T. Neur. Net. Lear. (2020). https://doi.org/10.1109/TNNLS.2020

    Article  Google Scholar 

  19. He, C.H., Tian, D., Moatimid, G.M., Salman, H.F., Zekry, M.H.: Hybrid rayleigh-van der pol-duffing oscillator: Stability analysis and controller. J. Low. Freq. Noise. V. A. 146134842110264, 1–25 (2021)

    Google Scholar 

  20. Tian, D., Ain, Q., Anjum, N., He, C.H., Cheng, B.: Fractal N/MEMS: from pull-in instability to pull-in stability. Fractals 29(02), 1–8 (2021)

    Article  MATH  Google Scholar 

  21. Tian, D., He, C.H.: A fractal micro-electromechanical system and its pull-in stability. J. Low. Freq. Noise. V. A. 40(3), 1–7 (2021)

    Google Scholar 

  22. Junges, L., Gallas, A.C.J.: Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers. New. J. Phys. 17(5), 53038–53049 (2015)

    Article  Google Scholar 

  23. Junges, L., Pöschel, T., Gallas, A.C.J.: Characterization of the stability of semiconductor lasers with delayed feedback according to the Lang-Kobayashi model. Eup. Phys. J. D. 67(7), 1–9 (2013)

    Google Scholar 

  24. Fatoorehchi, H., Alidadi, M., Rach, R., Shojaeian, A.: Theoretical and experimental investigation of thermal dynamics of steinhart-hart negative temperature coefficient thermistors. J. Heat Trans. 141(7), 1–11 (2019)

    Article  Google Scholar 

  25. Nan, D., Kai, S.: Power system simulation using the multistage adomian decomposition method. IEEE T. Power Syst. 32(1), 430–441 (2017)

    Article  Google Scholar 

  26. Abdul-Basset, A., Al-Hussein, F.R., Sajad, J.: Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system. Chaos Solitons Fract. 137, 109845–109852 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z.Z., Kundu, S.M., Tripathi, J.P., Bugalia, S.: Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays. Chaos Solitons Fract. 131, 109483–109499 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hui, M., Kang, C.J.: Stability and Hopf bifurcation analysis for an HIV infection model with Beddington–DeAngelis incidence and two delays. J. Appl. Math. Comput. 60(1–2), 265–290 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Yadav, A., Srivastava, K.P.: The impact of information and saturated treatment with time delay in an infectious disease model. J. Appl. Math. Comput. 66(1), 1–29 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (No.61863022, 11962012), and the Innovation and Entrepreneurship of Lanzhou City (No.2018-RC-87).

Funding

National Natural Science Foundation of China, 61863022, Jiangang Zhang, 11962012, XinLei An.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Zhang, J., An, X. et al. Stability and Hopf bifurcation analysis of flux neuron model with double time delays. J. Appl. Math. Comput. 68, 4017–4050 (2022). https://doi.org/10.1007/s12190-021-01682-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01682-y

Keywords

Navigation