Skip to main content

Advertisement

Log in

Dynamical analysis of an impulsive stochastic infected predator-prey system with BD functional response and modified saturated incidence

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper formulates and explores a nonautonomous impulsive stochastic predator-prey system with Beddington-DeAngelis (BD) functional response, where only the prey has a disease, which incorporates modified saturated incidence. The sufficient criteria of extinction and non-persistence in the mean of the target model are established, revealing that different intensities of stochastic perturbations contribute to dynamics of the system mentioned above. Stochastically ultimate boundedness is examined, and we further establish sufficient conditions for global attractivity. Our analytical findings are verified through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité cause par la petite vérole et des avantages de l’inoculation pour la prévenir. Mémoires de l’Académie Roy. des Sci. de Paris. (1760)

  2. Harmer, W.: Epidemic disease in England-The evidence of variability and of persistency of type. Lancet. 167(4306), 733–739 (1906)

    Google Scholar 

  3. Ross, S.R.: The prevention of malaria. London Murray, London (1911)

    Google Scholar 

  4. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics-I. B. Math. Biol. 53(1–2), 33–55 (1991)

    Google Scholar 

  5. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-II. The problem of endemicity. B. Math. Biol. 53(1–2), 57–87 (1991)

    Google Scholar 

  6. May, R.M., Anderson, R.M., Irwin, M.E.: The transmission dynamics of human immunodeficiency virus (HIV). Philos. Trans. Roy. Soc. Lond. B. 321(1207), 565–607 (1988)

    Article  Google Scholar 

  7. Chattopadhyay, J., Arino, O.: A predator-prey model with disease in the prey. Nonlinear Anal-Theor. 36(6), 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Getz, W.M., Pickering, J.: Epidemic models: Thresholds and population regulation. Am. Nat. 121(6), 892–898 (1983)

    Article  Google Scholar 

  9. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator-prey system with several response functions-a comparative study. J. Theor. Biol. 248(1), 10–25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu, C., Ding, X.H.: Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations. Appl. Math. Comput. 350, 313–322 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Xu, C.H., Yu, Y.G., Ren, G.J.: Dynamic analysis of a stochastic predator-prey model with Crowley-Martin functional response, disease in predator, and saturation incidence. J. Comput. Nonlin. Dyn. 15(7), 071004 (2020)

    Article  Google Scholar 

  12. Liu, G.D., Wang, X., Meng, X.Z., Gao, S.J.: Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps. Complexity. 2017, 1950970 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, C.H., Yu, Y.G., Ren, G.J., Hai, X.D., Lu, Z.Z.: Extinction and permanence analysis of stochastic predator-prey model with disease, ratio-dependent type functional response and nonlinear incidence rate. J. Comput. Nonlin. Dyn. 16(11), 111004 (2021)

    Article  Google Scholar 

  14. Levi, T., Kilpatrick, A.M., Mangel, M., Wilmers, C.C.: Deer, predators, and the emergence of Lyme disease. P. Natl. Acad. Sci. U.S.A. 109(27), 10942–10947 (2012)

    Article  Google Scholar 

  15. Biswas, S., Sasmal, S., Samanta, S., Saifuddin, M., Khan, Q.J.A., Chattopadhyay, J.: A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 263, 198–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, X.L., Huang, Y.H., Weng, P.X.: Permanence and stability of a diffusive predator-prey model with disease in the prey. Comput. Math. Appl. 68(10), 1431–1445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Abhijit, M., Debadatta, A., Nandadulal, B.: Persistence and extinction of species in a disease-induced ecological system under environmental stochasticity. Phys. Rev. E. 103(3), 032412 (2021)

    Article  MathSciNet  Google Scholar 

  18. Deng, M.L., Fan, Y.B.: Invariant measure of a stochastic hybrid predator-prey model with infected prey. Appl. Math. Lett. 124, 107670 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Foryś, U., Qiao, M.H.: Asymptotic dynamics of a deterministic and stochastic predator-prey model with disease in the prey species. Math. Method. Appl. Sci. 37(3), 306–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji, C.Y., Jiang, D.Q.: Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 381(1), 441–453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jana, S., Kar, T.K.: Modeling and analysis of a prey-predator system with disease in the prey. Chaos Solitons Fractals 47, 42–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chakraborty, K., Das, K., Haldar, S., Kar, T.K.: A mathematical study of an eco-epidemiological system on disease persistence and extinction perspective. Appl. Math. Comput. 254, 99–112 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Anderson, R., May, R.: Population biological of infectious disease. Heidelberg. Germany, Springer, Berlin (1982)

    Book  Google Scholar 

  24. Capasso, V., Serio, G.: Generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei, C.J., Chen, L.S.: A delayed epidemic model with pulse vaccination. Discrete Dyn. Nat. Soc. 2008(1), 746951 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Kaddar, A.: On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate. Electron. J. Differ. Eq. 2009(133), 1–7 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Liu, Z.J.: Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Anal-Real. 14(3), 1286–1299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Suryanto, A., Kusumawinahyu, W.M., Darti, I., Yanti, I.: Dynamically consistent discrete epidemic model with modified saturated incidence rate. Comput. Appl. Math. 32(2), 373–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tan, R.H., Liu, Z.J., Guo, S.L., Xiang, H.L.: On a nonautonomous competitive system subject to stochastic and impulsive perturbations. Appl. Math. Comput. 256, 702–714 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Liu, M., Wang, K.: On a stochastic logistic equation with impulsive perturbations. Comput. Math. Appl. 63(5), 871–886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, M., Wang, K.: Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturbation. Appl. Math. Model. 36(11), 5344–5353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mao, X., Yuan, C.: Stochastic differential equations with Markovian switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  33. Mao, X.: Stochastic differential equations and applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  34. Liu, M., Wang, K.: Dynamics and simulations of a logistic model with impulsive perturbations in a random environment. Math. Comput. Simulat. 92, 53–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, R.H., Zou, X.L., Wang, K.: Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations. Commun. Nonlinear Sci. 20(3), 965–974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shi, R.Q., Jiang, X.W., Chen, L.S.: A predator-prey model with disease in the prey and two impulses for integrated pest management. Appl. Math. Model. 33(5), 2248–2256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, Z.J., Wu, J.H., Chen, Y.P., Haque, M.: Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy. Nonlinear Anal-Real. 11(1), 432–445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei, C.J., Chen, L.S.: Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting. Nonlinear Dynam. 76(2), 1109–1117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  40. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  41. Barblart, I.: Systemes d’équations différentielles d’oscillations non linéaires. RevueRoumaine de Mathematiques Pures et Appliquees. 4(2), 267–270 (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Natural Science Foundation of China (No. 11901059), Natural Science Foundation of Hubei province, China (No. 2019CFB353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., He, X. & Li, Y. Dynamical analysis of an impulsive stochastic infected predator-prey system with BD functional response and modified saturated incidence. J. Appl. Math. Comput. 68, 4075–4098 (2022). https://doi.org/10.1007/s12190-021-01678-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01678-8

Keywords

Navigation