Skip to main content
Log in

A stochastic turbidostat model coupled with distributed delay and degenerate diffusion: dynamics analysis

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Time delay, where it depends on the current state and on the past situation, is often occurred in biological activities, for example, the process by which microorganism consume nutrients into their available biomass is not instantaneous. This investigation inspects the dynamic behavior of stochastic turbidostat model coupled with distributed delay and degenerate diffusion, including sufficient conditions of the extinction and the existence of a unique stationary distribution. What’s more, the existence and uniqueness of globally positive equilibrium of the exploited model are studied. The findings manifest that the turbidostat system is ergodic only when the intensity of white noise is very small. Finally, some numerical examples are proposed to indicate the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo, H., Chen, L.: Qualitative analysis of a variable yield turbidostat model with impulsive state feedback control. J. Appl. Math. Comput. 33(1–2), 193–208 (2010)

    Article  MathSciNet  Google Scholar 

  2. Hu, X., Li, Z., Xiang, X.: Feedback control for a turbidostat model with ratio-dependent growth rate. J. Appl. Math. Inform. 31(3–4), 385–398 (2013)

    Article  MathSciNet  Google Scholar 

  3. Li, B.: Competition in a turbidostat for an inhibitory nutrient. J. Biol. Dyn. 2(2), 208–220 (2008)

    Article  MathSciNet  Google Scholar 

  4. Li, Z., Chen, L.: Periodic solution of a turbidostat model with impulsive state feedback control. Nonlinear Dyn. 58(3), 525–538 (2009)

    Article  MathSciNet  Google Scholar 

  5. Yao, Y.: Dynamics of a delay turbidostat system with contois growth rate. Math. Biosci. Eng. 16(1), 56–77 (2018)

    Article  MathSciNet  Google Scholar 

  6. Yao, Y., Li, Z., Xiang, H., et al.: Dynamic behaviors of a turbidostat model with Tissiet functional response and discrete delay. Adv. Differ. Equ. 2018(1), 106 (2018)

    Article  MathSciNet  Google Scholar 

  7. Yao, Y., Li, Z., Liu, Z.: Hopf bifurcation analysis of a turbidostat model with discrete delay. Appl. Math. Comput. 262, 267–281 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Yu, T., Yuan, S., Zhang, T.: The effect of delay interval on the feedback control for a turbidostat model. J. Frankl. Inst. (2021). https://doi.org/10.1016/j.jfranklin.2021.08.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Mu, Y., Li, Z., Xiang, H., et al.: Bifurcation analysis of a turbidostat model with distributed delay. Nonlinear Dyn. 90, 1315–1334 (2017)

    Article  MathSciNet  Google Scholar 

  10. Macdonald, N.: Time lags in biological models. In: Lecture notes in biomathematics. Springer, Heidelberg (1978)

  11. Xu, C., Yuan, S., Zhang, T.: Stochastic sensitivity analysis for a competitive turbidostat model with inhibitory nutrients. Int. J. Bifurc. Chaos 26(10), 707–723 (2016)

    Article  MathSciNet  Google Scholar 

  12. Yu, M., Lo, W.: Dynamics of microorganism cultivation with delay and stochastic perturbation. Nonlinear Dyn. 101(6), 501–519 (2020)

    MathSciNet  Google Scholar 

  13. Shang, Y.: The limit behavior of a stochastic logistic model with individual time-dependent rates. J. Math. 2013, 1–7 (2013)

    Article  MathSciNet  Google Scholar 

  14. Li, Z., Mu, Y., Xiang, H., et al.: Mean persistence and extinction for a novel stochastic turbidostat model. Nonlinear Dyn. 97(1), 185–202 (2019)

    Article  Google Scholar 

  15. Ma, W., Luo, X., Zhu, Q.: Practical exponential stability of stochastic age-dependent capital system with Lévy noise. Syst. Control Lett. (2020). https://doi.org/10.1016/j.sysconle.2020.104759

    Article  MATH  Google Scholar 

  16. Xu, C., Yuan, S., Zhang, T.: Competitive exclusion in a general multi-species chemostat model with stochastic perturbations. Bull. Math. Biol. 83(1), 4 (2021)

    Article  MathSciNet  Google Scholar 

  17. Yu, X., Yuan, S., Zhang, T.: Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete Contin. Dyn. Syst. Ser. B 25(7), 2273–2290 (2020)

    MathSciNet  Google Scholar 

  18. Rudnicki, R., Pichór, K., Tyran-Kamińska, M.: Markov Semigroups and their Applications. Dynamics of Dissipation. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Rudnicki, R., Pichór, K.: Influence of stochastic perturbation on prey–predator systems. Math. Biosci. 206(1), 108–119 (2007)

    Article  MathSciNet  Google Scholar 

  20. Rudnicki, R.: Asymptotic Properties of the Fokker–Planck Equation, vol. 457. Springer, Berlin, pp 517–521 (1995)

  21. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood Publishing, Cambridge (1997)

    MATH  Google Scholar 

  22. Bao, K., Rong, L., Zhang, Q.: Analysis of a stochastic SIRS model with interval parameters. Discrete Contin. Dyn. Syst. B 24(9), 4827–4849 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab. Theory Relat. Fields 90, 377–402 (1991)

    Article  Google Scholar 

  24. Pichór, K., Rudnicki, R.: Stability of Markov semigroups and applications to parabolic systems. J. Math. Anal. Appl. 215, 56–74 (1997)

    Article  MathSciNet  Google Scholar 

  25. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 433, 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  26. Gao, M., Jiang, D., Hayat, T.: The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise. Commun. Nonlinear Sci. Numer. Simul. 75, 160–173 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by the Natural Science Foundation of China (No. 11871473), Shandong Provincial Natural Science Foundation (Nos. ZR2019MA010, ZR2019MA006, ZR2020MA039) and the Fundamental Research Funds for the Central Universities (No. 19CX02055A).

Author information

Authors and Affiliations

Authors

Contributions

DJ designed the research and methodology. XM wrote the original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daqing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Jiang, D., Alsaedi, A. et al. A stochastic turbidostat model coupled with distributed delay and degenerate diffusion: dynamics analysis. J. Appl. Math. Comput. 68, 2761–2786 (2022). https://doi.org/10.1007/s12190-021-01639-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01639-1

Keywords

Mathematics Subject Classification

Navigation