Skip to main content
Log in

ADI Galerkin finite element scheme for the two-dimensional semilinear partial intergro-differential equation with a weakly singular kernel

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In the work, the two-dimensional semilinear partial intergro-differential equations with a weakly singular kernel is considered. We construct a fully-discrete scheme via investigating a backward Euler method and first-order convolution quadrature rule for the temporal discretization, in combination with finite elements for the spatial discretization. Then, an alternating direction implicit algorithm is employed to reduce computing costs, and then we linearize the semi-linear term. After that, we utilize the energy method to derive the unconditional stability and convergence in \(L^2\) norm with convergence orders \(O(k+h^{r+1})\), where k and h are parameters for time and space step sizes, respectively, and r is the degree of continuous piecewise polynomial. Numerical experiments are carried out to confirm the accuracy and efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walk‘s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  2. Dendy, J.E.: An analysis of some Galerkin schemes for the solution of nonlinear time dependent problems. SIAM J. Numer. Anal. 12, 541–565 (1975)

    Article  MathSciNet  Google Scholar 

  3. Fernandes, R.I., Fairweather, G.: An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables. SIAM J. Numer. Anal. 28, 1265–1281 (1991)

    Article  MathSciNet  Google Scholar 

  4. Friedman, A., Shinbrot, M.: Volterra integral equations in Banach space. Trans. Am. Math. Soc. 126, 131–179 (1967)

    Article  MathSciNet  Google Scholar 

  5. Sun, Z.: Numerical Methods For Partial Differential Equations. Science Press, Beijing (2005).. (in Chinese)

    Google Scholar 

  6. Chen, H., Xu, D.: A compact difference scheme for an evolution equation with a weakly singular kernel. Numer, Math, Theory Methods Appl. 5, 559–573 (2012)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  Google Scholar 

  8. Zhang, Y., Sun, Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MathSciNet  Google Scholar 

  9. Ren, J., Huang, C., An, N.: Direct discontinuous Galerkin method for solving nonlinear time fractional diffusion equation with weak singularity solution. Appl. Math. Lett. 102, 106111 (2020)

    Article  MathSciNet  Google Scholar 

  10. Meng, T., Yi, L.: An h-p version of the continuous Petrov-Galerkin method for nonlinear delay differential equations. J. Sci. Comput. 74, 1091–1114 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wang, L., Yi, L.: An h-p version of the discontinuous Galerkin method for Volterra integro-differential equations with vanishing delays. J. Sci. Comput. 81, 2303–2330 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ji, B., Liao, H.L., Gong, Y., Zhang, L.: Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint. Commun. Nonlinear Sci. 90, 105366 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ji, B., Liao, H.-L., Zhang, L.: Simple maximum-principle preserving time-stepping methods for time-fractional Allen-Cahn equation. Adv. Comput. Math. 46, 37 (2020)

    Article  MathSciNet  Google Scholar 

  14. Liao, H.-L., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  15. Liao, H.-L., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  Google Scholar 

  16. Li, D., Liao, H.-L., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Chen, H., Holland, F., Stynes, M.: An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions. Appl. Numer. Math. 139, 52–61 (2019)

    Article  MathSciNet  Google Scholar 

  18. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    Article  MathSciNet  Google Scholar 

  19. Qiao, L., Xu, D., Yan, Y.: High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math. Method Appl. Sci. 43, 5162–5178 (2020)

    Article  MathSciNet  Google Scholar 

  20. Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)

    Article  MathSciNet  Google Scholar 

  21. Qiao, L., Xu, D.: BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. Comput. Math. Appl. 78, 3807–3820 (2019)

    Article  MathSciNet  Google Scholar 

  22. Li, L., Xu, D.: Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255, 471–485 (2013)

    Article  MathSciNet  Google Scholar 

  23. Liu, Y., Du, Y., Li, H., Wang, J.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)

    Article  MathSciNet  Google Scholar 

  24. López-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  Google Scholar 

  25. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  26. Lubich, C.H.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  27. Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2010)

    Article  MathSciNet  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  29. Qiu, W., Xu, D., Chen, H., Guo, J.: An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-mmobile equation in two dimensions. Comput. Math. Appl. 80, 3156–3172 (2020)

    Article  MathSciNet  Google Scholar 

  30. Qiu, W., Xu, D., Guo, J.: Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation. Appl. Math. Comput. 392, 125693 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Qiu, W., Xu, D., Guo, J., Zhou, J.: A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algorithm 85, 39C58 (2020)

    Article  MathSciNet  Google Scholar 

  32. Sloan, I.H., Thomée, V.: Time discretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal. 23, 1052–1061 (1986)

    Article  MathSciNet  Google Scholar 

  33. Xu, D.: The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo 34, 71–104 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (11701168, 11601144), the Scientific Research Fund of Hunan Provincial Education Department (18B304, 18C0531). Besides, the authors are very grateful for the helpful comments and suggestions provided via the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, H., Yang, X. et al. ADI Galerkin finite element scheme for the two-dimensional semilinear partial intergro-differential equation with a weakly singular kernel. J. Appl. Math. Comput. 68, 2471–2491 (2022). https://doi.org/10.1007/s12190-021-01609-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01609-7

Keywords

Mathematics Subject Classification

Navigation