Skip to main content
Log in

A higher-order hybrid finite difference method based on grid equidistribution for fourth-order singularly perturbed differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The paper presents a higher-order parameter uniform numerical approximation of a fourth-order singularly perturbed boundary value problem on a non-uniform grid. The given problem is converted into a coupled system of singularly perturbed differential equations. The coupled system of equation is discretized on a non-uniform mesh using a higher-order hybrid difference scheme. The grid equidistribution principle, based on a positive monitor function, is used to formulate the grid. The properties of the discrete operator are utilized on the equidistributed grid to obtain fourth-order parameter uniform convergence. The convergence obtained is optimal in the sense that it is free from any logarithmic term. Numerical result for two model problems is presented, which agree with the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhumaizi, Khalid: Flux-limiting solution techniques for simulation of reaction–diffusion–convection system. Commun. Nonlinear Sci. Numer. Simul. 12(6), 953–965 (2007)

    Article  MathSciNet  Google Scholar 

  2. Ewing, Richard E.: The Mathematics of Reservoir Simulation. SIAM, Philadelphia (1983)

    Book  Google Scholar 

  3. Rap, A., Elliott, L., Ingham, D.B., Lesnic, D., Wen, X.: The inverse source problem for the variable coefficients convection–diffusion equation. Inverse Probl. Sci. Eng. 15(5), 413–440 (2007)

    Article  MathSciNet  Google Scholar 

  4. Amick, C.J., Toland, J.F.: Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. Eur. J. Appl. Math. 3(2), 97–114 (1992)

    Article  MathSciNet  Google Scholar 

  5. Buffoni, B., Champneys, Alan R., Toland, J.F.: Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dyn. Differ. Equ. 8(2), 221–279 (1996)

    Article  MathSciNet  Google Scholar 

  6. Leizarowitz, A., Mizel, V.J.: One dimensional infinite-horizon variational problems arising in continuum mechanics. In: Mechanics and Thermodynamics of Continua, pp. 93–126. Springer (1991)

  7. McKenna, P.J., Walter, W.: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50(3), 703–715 (1990)

    Article  MathSciNet  Google Scholar 

  8. Lazer, Alan C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32(4), 537–578 (1990)

    Article  MathSciNet  Google Scholar 

  9. Chen, Yue, McKenna, P.J.: Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations. J. Differ. Equ. 136(2), 325–355 (1997)

    Article  MathSciNet  Google Scholar 

  10. Cross, Mark C., Hohenberg, Pierre C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851 (1993)

    Article  Google Scholar 

  11. Akhmediev, N.N., Buryak, A.V., Karlsson, M.: Radiationless optical solitons with oscillating tails. Opt. Commun. 110(5–6), 540–544 (1994)

    Article  Google Scholar 

  12. Coullet, P., Elphick, C., Repaux, D.: Nature of spatial chaos. Phys. Rev. Lett. 58(5), 431 (1987)

    Article  MathSciNet  Google Scholar 

  13. Dee, G.T., van Saarloos, W.: Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60(25), 2641 (1988)

    Article  Google Scholar 

  14. Kaushik, A., Kumar, V., Sharma, M., Sharma, N.: A modified graded mesh and higher order finite element method for singularly perturbed reaction–diffusion problems. Math. Comput. Simul. 185, 486–496 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kaushik, A., Vashishth, A.K., Kumar, V., Sharma, M.: A modified graded mesh and higher order finite element approximation for singular perturbation problems. J. Comput. Phys. 395, 275–285 (2019)

    Article  MathSciNet  Google Scholar 

  16. Bakhvalov, N.S.: Towards optimization of methods for solving boundary value problems in the presence of boundary layers. zh. vychisl. mat. i mat. fiz. 9, 841–859 (1969)

    Google Scholar 

  17. Shishkin, G.I.: Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer. USSR Comput. Math. Math. Phys. 29(4), 1–10 (1989)

    Article  MathSciNet  Google Scholar 

  18. Linß, T.: Uniform pointwise convergence of finite difference schemes using grid equidistribution. Computing 66(1), 27–39 (2001)

    Article  MathSciNet  Google Scholar 

  19. Gupta, A., Kaushik, A.: A robust spline difference method for robin-type reaction–diffusion problem using grid equidistribution. Appl. Math. Comput. 390, 125597 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection–diffusion problem. SIAM J. Numer. Anal. 39(4), 1446–1467 (2001)

    Article  MathSciNet  Google Scholar 

  21. Beckett, G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35(2), 87–109 (2000)

    Article  MathSciNet  Google Scholar 

  22. Kopteva, Natalia, Madden, Niall, Stynes, Martin: Grid equidistribution for reaction–diffusion problems in one dimension. Numer. Algorithms 40(3), 305–322 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kopteva, N.: Maximum norm a posteriori error estimates for a one dimensional singularly perturbed semilinear reaction diffusion problem. IMA J. Numer. Anal. 27, 576–592 (2007)

    Article  MathSciNet  Google Scholar 

  24. Beckett, M.G., Mackenzie, J.A.: On a uniformly accurate finite difference approximation of a singularly perturbed reaction diffusion problem using grid equidistribution. J. Comput. Appl. Math. 131, 381–405 (2001)

    Article  MathSciNet  Google Scholar 

  25. Chadha, N., Kopteva, N.: A robust grid equidistribution method for a one dimensional singularly perturbed semilinear reaction diffusion problem. IMA J. Numer. Anal. 31, 188–211 (2011)

    Article  MathSciNet  Google Scholar 

  26. Das, P., Natesan, S.: Higher order parameter uniform convergent schemes for Robin type reaction diffusion problems using adaptively generated grid. Int. J. Comput. Methods 9, 125–152 (2012)

    Article  MathSciNet  Google Scholar 

  27. Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations. Int. J. Comput. Math. 92, 562–578 (2015)

    Article  MathSciNet  Google Scholar 

  28. Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection diffusion problems on adaptively generated mesh. Comput. Model. Eng. Sci. 90, 463–485 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Xu, X., Huang, W., Russell, R.D., Williams, J.F.: Convergence of de Boor’s algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31, 580–596 (2011)

    Article  MathSciNet  Google Scholar 

  30. Shanthi, V., Ramanujam, N.: A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations. Appl. Math. Comput. 129(2–3), 269–294 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Das, Pratibhamoy, Natesan, Srinivasan: Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations. Int. J. Comput. Math. 92(3), 562–578 (2015)

    Article  MathSciNet  Google Scholar 

  32. Miller, J.J.H., O’Riordan, E., Shishkin, G.I., Bruce, Kellogg R.: Fitted numerical methods for singular perturbation problems. SIAM Rev. 39(3), 535–537 (1997)

    Google Scholar 

  33. Linß, Torsten: Robust convergence of a compact fourth-order finite difference scheme for reaction–diffusion problems. Numer. Math. 111(2), 239–249 (2008)

    Article  MathSciNet  Google Scholar 

  34. Matthews, S., O’Riordan, E., Shishkin, G.I.: A numerical method for a system of singularly perturbed reaction–diffusion equations. J. Comput. Appl. Math. 145(1), 151–166 (2002)

    Article  MathSciNet  Google Scholar 

  35. Miller, J.J., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions. World Scientific, Singapore (2012)

    Book  Google Scholar 

  36. Beckett, G., Mackenzie, J.A.: On a uniformly accurate finite difference approximation of a singularly perturbed reaction–diffusion problem using grid equidistribution. J. Comput. Appl. Math. 131(1–2), 381–405 (2001)

    Article  MathSciNet  Google Scholar 

  37. De Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations, pp. 12–20. Springer (1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Kaushik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kaushik, A. A higher-order hybrid finite difference method based on grid equidistribution for fourth-order singularly perturbed differential equations. J. Appl. Math. Comput. 68, 1163–1191 (2022). https://doi.org/10.1007/s12190-021-01560-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01560-7

Keywords

Mathematics Subject Classification

Navigation