Skip to main content
Log in

Bifurcation phenomena in the peristaltic transport of non-Newtonian fluid with heat and mass transfer effects

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

An in-depth bifurcation analysis is carried out for the peristaltic transport of non-Newtonian fluid with heat and mass transfer through an axisymmetric channel. Based on the perturbation technique, analytical solutions for flow rate and stream function are presented. This function and its velocity fields build a nonlinear dynamic system in two spatial dimensions. We are then interested in identifying the global and local bifurcation of the invariant curves in which the recurrent fluid dynamics close to the stagnation points change qualitatively. For this purpose, a geometric description, analytical expressions and the development of a computational algorithm are provided to recognize the multiplicity of admissible/virtual stagnation points. In a variety of physical parameters, the analysis highlights the presence of several types of nonlinear phenomena, such as infinite/finite heteroclinic and homoclinic orbits, saddle-node and border-collision bifurcations. These results guide the streamline patterns for capturing novel complex behaviors such as multiple trapping phenomena and critical transition to distinguish between different flow regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abu Arqub, O., Al-Smadi, M.: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space. Chaos Soliton Fract. 117, 161–167 (2018)

    Article  MATH  Google Scholar 

  2. Abu Arqub, O., Maayah, B.: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos Soliton Fract. 117, 117–124 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abu Arqub, O., Maayah, B.: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-fractional Volterra integro-differential equations. Chaos Soliton Fract. 126, 394–402 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abu Arqub, O., Maayah, B.: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana–Baleanu fractional sense. Chaos Soliton Fract. 125, 163–170 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ali, N., Hussain, S., Ullah, K., Bèg, O.A.: Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an ellis fluid in an axisymmetric tube. Eur. Phys. J. Plus 134, 141 (2019)

    Article  Google Scholar 

  6. Asghar, Z., Ali, N.: Streamline topologies and their bifurcations for mixed convective peristaltic flow. AIP Adv. 5, 097142 (2015)

    Article  Google Scholar 

  7. Asghar, Z., Ali, N., Ahmed, R., Wagas, M., Khan, W.A.: A mathematical framework for peristaltic flow analysis of non-newtonian sisko fluid in an undulating porous curved channel with heat and mass transfer effects. Comput. Methods Prog. Biol. 182, 105040 (2019)

    Article  Google Scholar 

  8. Brøns, M., Hartnack, J.N.: Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries. Phys. Fluids 11, 314–324 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carpenter, P.W., Pedley, T.J.: Flow past highly compliant boundaries and in collapsible tubes. In: Proceedings of the IUTAM Symposium. Springer (2001)

  10. Chaube, M.K., Tripathi, D., Anwar Bég, O., Sharma, S., Pandey, V.S.: Peristaltic creeping flow of power law physiological fluids through a nonuniform channel with slip effect. Appl. Bionics Biomech. 2015, 152802 (2015)

    Article  Google Scholar 

  11. Cliffe, K., Spence, A., Tavener, S.: The numerical analysis of bifurcation problems with application to fluid mechanics. Acta Numer. 9, 39–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deliceoğlu, A., Gürcan, F.: Streamline topology near non-simple degeneratecritical points in two-dimensional flow with symmetry about an axis. J. Fluid Mech. 606, 417–432 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deliceoğlu, A., Bozkurt, D.: Structural bifurcation of divergence-free vector fields near non-simple degenerate points with symmetry. J. Appl. Anal. Comput. 9, 718–738 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Dorfman, A.S.: Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine. Wiley, New York (2016)

    Google Scholar 

  15. El-Masry, Y.A.S., Abd-Elmaboud, Y., Abdel-Sattar, M.A.: Direct current/alternating current magnetohydrodynamic micropump of a hybrid nanofluid through a vertical annulus with heat transfer. J. Therm. Sci. Eng. Appl. 12(4), 044501 (2020)

    Article  Google Scholar 

  16. El-Sayed, M., Haroun, M.H., Mostapha, D.: Electrohydrodynamic peristaltic flow of a dielectric oldroydian viscoelastic fluid in a flexible channel with heat transfer. J. Appl. Mech. Technol. Phys. 55, 565–577 (2014)

    Article  MATH  Google Scholar 

  17. Fung, Y.C., Yih, C.S.: Peristaltic transport. Trans. ASME J. Appl. Mech. 35, 669–675 (1968)

    Article  MATH  Google Scholar 

  18. Gelfgat, A.: Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  19. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  20. Hayat, T., Ali, A.: On mechanism of peristaltic flows for power-law fluids. Physica A 371, 188–194 (2006)

    Article  Google Scholar 

  21. Hayat, T., Hina, S., Ali, N.: Simultaneous effects of slip and heat transfer on the peristaltic flow. Commun. Nonlinear. Sci. Numer. Simul. 15, 1526–1537 (2010)

    Article  MATH  Google Scholar 

  22. Hosham, H.A.: Bifurcation of limit cycles in piecewise-smooth systems with intersecting discontinuity surfaces. Nonlinear Dyn. 99, 2049–2063 (2020)

    Article  Google Scholar 

  23. Hosham, H.A.: Nonlinear behavior of a novel switching jerk system. Int. J. Bifurc. Chaos 30(14), 2050202 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hosham, H.A., Abou Elela, E.D.: Discontinuous phenomena in bioreactor system. Discrete Cont. Dyn. B 24(6), 2955–2969 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Jiménez-Lozano, J., Sen, M.: Streamline topologies of two-dimensional flow and their bifurcations. J. Fluid Mech. 49, 704–715 (2010)

    Google Scholar 

  26. Liu, Y., Liu, W.: Blood flow analysis in tapered stenosed arteries with the influence of heat and mass transfer. J. Appl. Math. Comput. 63, 523–541 (2020)

    Article  MathSciNet  Google Scholar 

  27. Ma, T., Wang, S.: Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, p. 119. American Mathematical Society, Providence (2005)

    Book  Google Scholar 

  28. Mallick, B., Misra, J.C.: Peristaltic flow of Eyring–Powell nanofluid under the action of an electromagnetic field. Eng. Sci. Technol. Int J. 22, 266–281 (2019)

    Google Scholar 

  29. Manton, M.J.: Long-wavelength peristaltic pumping at low Reynolds number. J. Biomech. 68(3), 467–476 (1975)

    MATH  Google Scholar 

  30. Mekheimer, K.S., Hasona, W.M., Abo-Elkhair, R.E., Zaher, A.Z.: Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Phys. Lett. A. 382, 85–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mishra, S.R., Das, G.C., Acharya, M.: Mass and heat transfer effect on MHD flow of a viscoelastic fluid through a porous medium with oscillatory suction and heat source. Int. J. Heat Mass Transf. 57, 433–438 (2013)

    Article  Google Scholar 

  32. Misra, J., Mallick, B., Sinha, A.: Heat and mass transfer in asymmetric channels during peristaltic transport of an MHD fluid having temperature-dependent properties. Alex. Eng. J. 57, 391–406 (2018)

    Article  Google Scholar 

  33. Muthuraj, R., Srinivas, S.: Mixed convective heat and mass transfer in a vertical wavy channel with traveling thermal waves and porous medium. Chem. Ind. Chem. Eng. Q. 59, 3516–3528 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Muthuraj, S.S.R., Sakina, J.: A note on the influence of heat and mass transfer on a peristaltic flow of a viscous fluid in a vertical asymmetric channel with wall slip. Chem. Ind. Chem. Eng. Q. 18, 483–493 (2012)

    Article  Google Scholar 

  35. Nadeem, S., Shahzadi, I.: Mathematical analysis for peristaltic flow of two phase nanofluid in a curved channel. Commun. Theor. Phys. 64(5), 547–554 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reddy, M.G.: Mass and heat transfer effect on MHD flow of a viscoelastic fluid through a porous medium with oscillatory suction and heat source. Alex. Eng. J. 55, 1225–1234 (2016)

    Article  Google Scholar 

  37. Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid. Mech. 37, 799–825 (1969)

    Article  Google Scholar 

  38. Singh, A.K., Singh, A.K., Singh, N.P.: Heat and mass transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction velocity. Indian J. Pure Appl. Math. 34, 429–442 (2003)

    MATH  Google Scholar 

  39. Vaidya, H., Rajashekhar, C., Manjunatha, G., Prasad, K.V., Makinde, O.D., Vajravelu, K.: Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity. Int. J. Heat Mass Transf. 95, 045219 (2020)

    Google Scholar 

  40. Vajravelu, K.: Peristaltic flow and heat transfer of a conducting phan-thien- tanner fluid in an asymmetric channel-application to chyme movement in small intestine. Int. J. Appl. Mech. Eng. 21, 713–736 (2016)

    Article  Google Scholar 

  41. Wiggins, S.: Global Bifurcations and Chaos. Springer, New-York (1988)

    Book  MATH  Google Scholar 

  42. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New-York (2003)

    MATH  Google Scholar 

  43. Zien, T.F., Ostrach, S.: A long wave approximation to peristaltic motion. J. Biomech. 3(1), 63–75 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Hosham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosham, H.A., Hafez, N.M. Bifurcation phenomena in the peristaltic transport of non-Newtonian fluid with heat and mass transfer effects. J. Appl. Math. Comput. 67, 275–299 (2021). https://doi.org/10.1007/s12190-020-01477-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01477-7

Keywords

Mathematics Subject Classification

Navigation