Skip to main content
Log in

Permanence and extinction of stochastic competitive Lotka–Volterra system with Lévy noise

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper derives sufficient conditions for stochastic permanence and extinction of a stochastic non-autonomous competitive Lotka–Volterra system with Lévy noise. For the autonomous case, the results show that stochastic permanence and extinction are characterized by two parameters \(\mathcal {B}_{1}\) and \(\mathcal {B}_{2}\): if \(\mathcal {B}_{1}\mathcal {B}_{2} \ne 0\), then the system is either stochastically permanent or extinctive. That is, it is extinctive if and only if \(\mathcal {B}_{1}<0\) and \(\mathcal {B}_{2}<0\); otherwise, it is stochastically permanent. Some existing results are included as special cases. An example and its simulations are given to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bahar, A., Mao, X.R.: Stochastic delay population dynamics. Int. J. Pure Appl. Math. 11, 377–400 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Du, N.H., Sam, V.H.: Dynamics of a stochastic Lotka–Volterra model perturbed by white noise. J. Math. Anal. Appl. 324, 82–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hu, Y.Z., Wu, F.K., Huang, C.M.: Stochastic Lotka–Volterra models with multiple delays. J. Math. Anal. Appl. 375, 42–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang, D.Q., Ji, C.Y., Li, X.Y., O’Regan, D.: Analysis of autonomous Lotka–Volterra competition systems with random perturbation. J. Math. Anal. Appl. 390, 582–595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, X.Y., Mao, X.R.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. 24, 523–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, M., Wang, K.: Analysis of a stochastic autonomous mutualism model. J. Math. Anal. Appl. 402, 392–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, Q., Mao, X.R.: Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334, 69–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luo, Q., Mao, X.R.: Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 355, 577–593 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mao, X.R., Sabanis, S., Renshaw, E.: Asymptotic behavior of the stochastic Lotka–Volterra model. J. Math. Anal. Appl. 287, 141–156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, C., Yin, G.: On competitive Lotka–Volterra model in random environments. J. Math. Anal. Appl. 357, 154–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wan, L., Zhou, Q.H.: Stochastic Lotka–Volterra model with infinite delay. Statist. Probab. Lett. 79, 698–706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, M., Wang, K.: Dynamics of a Leslie–Gower Holling-type II predator-prey system with Lévy jumps. Nonlinear Anal. 85, 204–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, X.H., Li, W.X., Liu, M., Wang, K.: Dynamics of a stochastic Holling II one-predator two-prey system with jumps. Phys. A. 421, 571–582 (2015)

    Article  MathSciNet  Google Scholar 

  14. Zou, X.L., Wang, K.: Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps. Nonlinear Anal. Hybrid. Syst. 13, 32–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, M., Wang, K.: Stochastic Lotka–Volterra systems with Lévy noise. J. Math. Anal. Appl. 410, 750–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, M., Deng, M.L., Du, B.: Analysis of a stochastic logistic model with diffusion. Appl. Math. Comput. 266, 169–182 (2015)

    MathSciNet  Google Scholar 

  17. Bao, J.H., Mao, X.R., Yin, G., Yuan, C.G.: Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Anal. 74, 6601–6616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bao, J.H., Yuan, C.G.: Stochastic population dynamics driven by Lévy noise. J. Math. Anal. Appl. 391, 363–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, M., Wang, K.: Population dynamical behavior of Lotka–Volterra cooperative systems with random perturbations. Discrete Contin. Dyn. Syst. 33, 2495–2522 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tran, K., Yin, G.: Stochastic competitive Lotka–Volterra ecosystems under partial observation: feedback controls for permanence and extinction. J. Franklin Inst. 351, 4039–4064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, M., Fan, M.: Permanence of stochastic Lotka–Volterra systems. J. Nonlinear Sci. 27, 425–452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schreiber, S.J.: Persistence for stochastic difference equations: a mini-review. J. Differ. Equ. Appl. 18, 1381–1403 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, M., Bai, C.Z.: Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Classerman, P.: Monte Carlo Methods in Financial Engineering. Springer, Columbia University (2003)

    Book  Google Scholar 

  25. Zhu, C., Yin, G.: On hybrid competitive Lotka–Volterra ecosystems. Nonlinear Anal. 71, e1370–e1379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, Q.X.: Asymptotic stability in the \(p\)th moment for stochastic differential equations with Lévy noise. J. Math. Anal. Appl. 416, 126–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, H., Zhu, Q.X.: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form. Automatica 54, 284–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, Q.X., Cao, J.D., Rakkiyappan, R.: Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn. 79, 1085–1098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, Q.X.: \(p\)th Moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J. Franklin Inst. 351, 3965–3986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, Q.X.: Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching. Int. J. Control 90, 1703–1712 (2017)

    Article  MATH  Google Scholar 

  31. Wang, B., Zhu, Q.X.: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems. Syst. Control Lett. 105, 55–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Wang.

Additional information

This work is supported by National Natural Science Foundation of China (No. 11171374).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Wang, S. & Wang, L. Permanence and extinction of stochastic competitive Lotka–Volterra system with Lévy noise. J. Appl. Math. Comput. 57, 667–683 (2018). https://doi.org/10.1007/s12190-017-1127-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1127-y

Keywords

Mathematics Subject Classification

Navigation