Skip to main content
Log in

Mixed finite element methods for the Rosenau equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Mixed finite element methods are applied to the Rosenau equation by employing splitting technique. The semi-discrete methods are derived using \(C^0-\)piecewise linear finite elements in spatial direction. The existence of unique solutions of the semi-discrete and fully discrete Galerkin mixed finite element methods is proved, and error estimates are established in one space dimension. An extension to problem in two space variables is also discussed. It is shown that the Galerkin mixed finite finite element have the same rate of convergence as in the classical methods without requiring the LBB consistency condition. At last numerical experiments are carried out to support the theoretical claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenau, P.: A quasi-continuous description of a non-linear transmission line. Phys. Scr. 34, 827–829 (1986)

    Article  Google Scholar 

  2. Rosenau, P.: Dynamics of dense discrete systems. Prog. Theor. Phys. 79, 1028–1042 (1988)

    Article  Google Scholar 

  3. Park, M.A.: On the Rosenau equation. Math. Appl. Comput. 9, 145–152 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Chung, S.K., Pani, A.K.: A Second order splitting lumped mass finite element method for the Rosenau equation. Differ. Equ. Dyn. Syst. 12, 331–351 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Chung, S.K., Pani, A.K.: Numerical methods for the Rosenau equation. Appl. Anal. 77, 351–369 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kim, Y.D., Lee, H.Y.: The convergence of finite element Galerkin solution of the Rosenau equation. Korean J. Comput. Appl. Math. 5, 171–180 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Lee, H.Y., Ahn, M.J.: The convergence of the fully discrete solution for the Rosenau equation. Comput. Math. Appl. 32, 15–22 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atouani, N., Omrani, K.: Galerkin finite element method for the Rosenau-RLW equation. Comput. Math. Appl. 66, 289–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, S.K.: Finite difference approximate solutions for the Rosenau equation. Appl. Anal. 69(1–2), 149–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Omrani, K., Abidi, F., Achouri, T., Khiari, N.: A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput. 201, 35–43 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Atouani, N., Omrani, K.: On the convergence of conservative difference schemes for the 2D generalized Rosenau-Korteweg de Vries equation. Appl. Math. Comput. 250, 832–847 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Atouani, N., Omrani, K.: A new conservative high-order accurate difference scheme for the Rosenau equation. Appl. Anal. 94, 2435–2455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, J.S., Zheng, K.L.: Two conservative difference schemes for the generalized Rosenau equation, Bound. Value Probl. article ID 543503 (2010)

  14. Ghiloufi, A., Kadri, T.: Analysis of new conservative difference scheme for two-dimensional Rosenau-RLW equation. Appl. Anal. (2016). doi:10.1080/00036811.2016.1186270

    MATH  Google Scholar 

  15. He, D.: New solitary solutions and a conservative numerical method for the Rosenau-Kawahara equation with power law nonlinearity. Nonlinear Dyn. 82, 1177–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, D.: Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2700-x

    MathSciNet  MATH  Google Scholar 

  17. He, D., Pan, Kejia: A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation. Appl. Math. Comput. 271, 323–336 (2015)

    MathSciNet  Google Scholar 

  18. Pani, A.K.: An \(H^1\)-Galerkin mixed finite element method for parabolic partial equations. SIAM J. Numer. Anal. 35, 712–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezzi, F., Douglas Jr., J., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems. Numer. Math. 51, 237–250 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Douglas Jr., J., Roberts, J.E.: Global estimates for mixed methods for the second order elliptic equations. Math. Comput. 44, 39–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garcia, S.M.F.: Improved error estimates for mixed element approximations nonlinear parabolic equations: the discrete-time case. Numer. Methods Partial Differ. Equ. 8, 395–404 (1992)

    Article  Google Scholar 

  22. Johnson, C., Thomée, V.: Eroor estimates for some mixed finite element methods for parabolic type problems. RAIRO Numer. Anal. 15, 41–78 (1981)

    Article  MATH  Google Scholar 

  23. Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element methods for the wave equation. Comput. Methods Appl. Mech. Eng. 82, 205–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geveci, T.: On the application of mixed element methods to the wave equation. Math. Model. Numer. Anal. 22, 243–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arnold, D.N., Douglas Jr., J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45, 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pitkäranta, J., Stenberg, R.: Analysis of some mixed finite element methods for plane elasticity equations. Math. Comput. 41, 399–423 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stenberg, R., Suri, M.: Mixed finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72, 367–387 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Falk, R.S.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numer. 14, 249–277 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737–749 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44, 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Crouzeix, M., Falk, R.S.: Nonconforming finite element for the Stokes problem. Math. Comput. 52, 437–456 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations, Theorem and Algorithms. Springer, New York (1986)

    Book  MATH  Google Scholar 

  34. Jones Tarcius Doss, L., Nandini, A.P.: An \(H^1-\)Galerkin mixed finite element method for the extended Fisher Kolmogorov equation. Int. J. Numer. Anal. Model. 4, 460–485 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Xu, Y., Hu, B., Xie, X., Hu, J.: Mixed finite element analysis for dissipative SRLW equations with damping term. Appl. Math. Comput. 218, 4788–4797 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Pany, A.K., Nataraj, N., Singh, S.: A new mixed finite element method for Burgers equation. J. Appl. Math. Comput. 23, 43–55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jia, X., Li, H., Liu, Y., Fang, Z.: \(H^1\)-Galerkin mixed method for the coupled Burgers equation. World Academy of Science, Engineering and Technology International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering 6(8), (2012)

  38. Liu, Y., Li, H., Du, Y., Wang, J.: Explicit multistep mixed finite element method for RLW equation. Abstr. Appl. Anal. Article ID 768976, (2013) doi:10.1155/2013/768976

  39. Guo, L., Chen, H.: \(H^1\)-Galerkin mixed finite element method for the regularized long wave equation. Computing 77, 205–221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, J.: Numerical analysis of a mixed finite element method for Rosenau-Burgers equation. In: International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

  41. Danumjaya, P., Pani, A.K.: Mixed finite element methods for a fourth order reaction diffusion equation. Numer. Methods Partial Differ. Equ. 28, 1227–1251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wheeler, M.F.: A priori \(L^2\)-error estimates for Galerkin approximations to parabolic prblems SIAM. J. Numer. Anal. 10, 723–749 (1973)

    Article  Google Scholar 

  43. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L^\infty \) of \(H^1-\)projection into finite element spaces. Math. Comput. 38, 1 (1982)

    MathSciNet  MATH  Google Scholar 

  44. Thomée, V.: Galerkin Finite Element Methods for parabolic Problems, Springer Serie in Computational Mathematics, vol. 25. Springer, Berlin (1997)

    Book  Google Scholar 

  45. Browder, F.E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Applications of nonlinear partial differential equation. (ed. R. Finn) Proceedings of symposia applied mathematics vol. 17, pp. 24-49, AMS, Providence (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Omrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atouani, N., Ouali, Y. & Omrani, K. Mixed finite element methods for the Rosenau equation. J. Appl. Math. Comput. 57, 393–420 (2018). https://doi.org/10.1007/s12190-017-1112-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1112-5

Keywords

Mathematics Subject Classification

Navigation