Skip to main content
Log in

Nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we discuss nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems. By using vectorial version fixed point theorems and splitting the Lipschitz or linear growth conditions on the nonlinear terms into two parts and applying the techniques that use convergent to zero matrix and vector-valued norm via boundedness and continuity of Mittag-Leffler functions, two couple existence results for the solutions are presented in a complete generalized metric space or a generalized Banach space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)

    MATH  Google Scholar 

  2. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, London (2012)

    Book  Google Scholar 

  3. Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Mathematics (2010)

  4. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, Elementary Functions, vol. 1. Nauka, Moscow (1981). (in Russian)

    MATH  Google Scholar 

  5. Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  6. Sandev, T., Metzler, R., Dubbeldam, J.: Generalized space-time fractional diffusion equation with composite fractional time derivative. Phys. A 391, 2527–2542 (2012)

    Article  MathSciNet  Google Scholar 

  7. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  8. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

    MATH  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  10. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000)

    Book  MATH  Google Scholar 

  11. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, HEP, New York (2011)

    Google Scholar 

  12. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  13. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Q., Lu, D., Fang, Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 86, 949–963 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, Q., Wang, J., Wang, R., Ke, X.: Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Lett. 36, 7–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stamova, I.: Global stability of impulsive fractional differential equations. Appl. Math. Comput. 237, 605–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bai, C., Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150, 611–621 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mophou, G.M., N’Guérékata, G.M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216, 61–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gejji, V.D., Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328, 1026–1033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Su, X.: Boundary value problem for a coupled systerm of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)

    Article  MathSciNet  Google Scholar 

  25. Jiang, W.: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal.:RWA 13, 2285–2292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, S., Li, Q., Li, Y.: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64, 3310–3320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y.: Existence of solutions for impulsive differential models on half lines involving Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 2604–2625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Y.: Existence and uniqueness of solutions for a class of initial value problems of fractional differential systems on half lines. Bull. Sci. Math. 137, 1048–1071 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Butkovskii, A.G., Postnov, S.S., Postnova, E.A.: Fractional integro-differential calculus and its control-theoretical applications. II: fractional dynamic systems: modeling and hardware implementation. Automat. Remote Control 74, 725–749 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, S., Wang, G., Zhang, L.: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26, 1120–1124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solutions for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boucherif, A., Precup, R.: On the nonlocal intial value problem for first order differential equations. Fixed Point Theory 4, 205–212 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Nica, O., Precup, R.: On the nonlocal initial value problem for first order differential systems. Stud. Univ. Babeş-Bolyai Math. 56, 125–137 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Nica, O., Infante, G., Pietramala, P.: Existence results for impulsive systems with initial nonlocal conditions. Math. Model. Anal. 18, 599–611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, J., Fec̆kan, M., Zhou, Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Spec. Top. 222, 1855–1872 (2013)

    Google Scholar 

  36. Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 49, 703–708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nica, O.: Nonlocal initial value problems for first order differential systems. Fixed Point Theory 13, 603–612 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Precup, R.: Methods in Nonlinear Integral Equations. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  39. Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2003)

    Book  MATH  Google Scholar 

  40. Wang, J., Zhang, Y.: Analysis of fractional order differential coupled systems. Math. Meth. Appl. Sci. 38, 3322–3338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014]240). We would also like to acknowledge the valuable suggestions from the reviewer and colleague X. Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J. Nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems. J. Appl. Math. Comput. 52, 323–343 (2016). https://doi.org/10.1007/s12190-015-0943-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0943-1

Keywords

Mathematics Subject Classification

Navigation