Skip to main content
Log in

An iterative technique for solving singularly perturbed parabolic PDE

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we examine the applicability of a variant of iterative Tikhonov regularization for solving parabolic PDE with its highest order space derivative multiplied by a small parameter \(\epsilon \). The solution of the operator equation \(\frac{\partial u }{\partial t}-\epsilon \frac{\partial ^2 u}{\partial x^2}+a(x,t)=f(x,t)\) is not uniformly convergent to the solution of the operator equation \(\frac{\partial u }{\partial t} +a(x,t) =f(x,t)\), when \(\epsilon \rightarrow 0\). Although many numerical techniques are employed in practice to tackle the problem, the discretization of the PDE often leads to ill-conditioned system and hence the perturbed parabolic operator equation become ill-posed. Since we are dealing with unbounded operators, first we discuss the general theory for unbounded operators for iterated regularization scheme and propose an a posteriori parameter choice rule for choosing a regularization parameter in the iterative scheme. We then apply these techniques in the context of perturbed parabolic problems. Finally, we implement our iterative scheme and compare with other basic existing schemes to assert the adaptability of the scheme as an alternate approach for solving the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Boglaev, I.P.: Finite difference domain decomposition algorithms for a parabolic problem with boundary layers. Comput. Math. Appl. 36, 25–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clavero, C., Gracia, J.L.: High order methods for elliptic and time dependent reaction-diffusion singularly perturbed problems. Appl. Math. Comput. 168, 1109–1127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clavero, C., Gracia, J.L.: On the uniform convergence of a finite difference scheme for time dependent singularly perturbed reaction-diffusion problems. Appl. Math. Comput. 216, 1478–1488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  5. George, S., Nair, M.T.: An apostoriori parameter choice for simpli- fied regularization of ill-posed problems. Integral Equ. Oper. Theory 16, 392–399 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gfrerer, H.: An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comp. 49(180), 507–522 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  8. Hemker, P.W., Shishkin, G.I., Shishkina, L.P.: \(\epsilon \)-uniform schemes with high-order time accuracy for parabolic singular perturbation problems. IMA J. Numer. Anal. 20, 99–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kadalbajoo, M., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217, 3641–3716 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kopteva, N.: On the uniform in small parameter convergence of a weighted scheme for the one dimensional time dependent convection-diffusion equation. Comput. Math. Math. Phys. 37, 1173–1180 (1997)

    MathSciNet  Google Scholar 

  11. Linß, T., Madden, N.: Parameter uniform approximations for time-dependent reaction-diffusion problems. Numer. Methods Partial Differ. Equ. 23, 1290–1300 (2007)

    Article  MATH  Google Scholar 

  12. Mukherjee, K., Natesan, S.: Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems. Computing 92, 132 (2011)

    Article  MathSciNet  Google Scholar 

  13. Ng-Stynes, M.J., O’Riordan, E., Stynes, M.: Numerical methods for time-dependent convection-diffusion equations. J. Comput. Appl. Math. 21, 289–310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rajan, M.P., Reddy, G.D. : An Iterative Tikhonov regularization for solving singularly perturbed elliptic PDE (Under review)

  15. Rajan, M.P.: Convergence analysis of a regularized approximation for solving Fredholm integral equations of the first kind. J. Math. Anal. Appl 279, 522–530 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ross, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Elliptic Differential Equations. Springer-Verlag, Berlin (2008)

    Google Scholar 

  17. Sheela, S., Singh, A.: Tikhonov regularization of an elliptic PDE. Math. Comput. Simul. 57, 1–4 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shishkin, G.I. : Grid approximation of singularly perturbed elliptic and parabolic equations, Second doctoral thesis, Keldysh Institute, Moscow (1991)

  19. Shishkin, G.I.: On finite difference fitted schemes for singularly perturbed boundary value problems with a parabolic boundary layer. J. Math. Anal. Appl. 208, 181–204 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the unknown referees for their careful reading of the manuscripts and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, M.P., Reddy, G.D. An iterative technique for solving singularly perturbed parabolic PDE. J. Appl. Math. Comput. 50, 199–225 (2016). https://doi.org/10.1007/s12190-015-0866-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0866-x

Keywords

Mathematical Subject Classification

Navigation