Skip to main content
Log in

On the dynamics of a stochastic ratio-dependent predator–prey model with a specific functional response

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a new stochastic two-species predator–prey model which is ratio-dependent and a specific functional response is considered in, is proposed. The existence of a global positive solution to the model for any positive initial value is shown. Stochastically ultimate boundedness and uniform continuity are derived. Moreover, under some sufficient conditions, the stochastic permanence and extinction are established for the model. At last, numerical simulations are carried out to support our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  2. Pang, G., Wang, F., Chen, L.: Extinction and permanence in delayed stage-structure predator–prey system with impulsive effects. Chaos Solitons Fractals 39(5), 2216–2224 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, Y.P., Liu, Z.J., Haque, M.: Analysis of a Leslie–Gower-type prey–predator model with periodic impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3412–3423 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shi, X.Y., Zhou, X.Y., Song, X.Y.: Analysis of a stage-structured predator–prey model with Crowley–Martin function. J. Appl. Math. Comput. 36, 459–472 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ji, C.Y., Jiang, D.Q., Shi, N.Z.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. JMAA 359, 482–498 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Liu, X.Q., Zhong, S.M., Tian, B.D., Zheng, F.X.: Asymptotic properties of a stochastic predator–prey model with Crowley–Martin functional response. J. Appl. Math. Comput. 43, 479–490 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. LV, J. L., Wang, K., Chen, D. D.: Analysis on a stochastic Two-species ratio-dependent predator–prey model. Methodol. Comput. Appl. Probab. doi:10.1007/s11009-013-9383-2

  8. Crowley, P.H., Martin, E.K.: Functional response and interference within and between year classes of a dragonfly population. J. North Am. Benthol. Soc. 8(3), 211–221 (1989)

    Article  Google Scholar 

  9. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  10. DeAngelis, D.L., Goldsten, R.A., Neill, R.V.O’.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  11. Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969)

    Article  Google Scholar 

  12. Kaddar, A.: On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate. Electron. J. Differ. Equ. 2009, 1-–7 (2009)

    MathSciNet  Google Scholar 

  13. Das, P., Mukherjee, D., Hsieh, Y.: An S-I epidemic model with saturation incidence: discrete and stochastic version. Int. J. Nonlinear Anal. Appl 1, 1–9 (2011)

    Google Scholar 

  14. Zhou, X.Y., Cui, J.: Global stability of the viral dynamics with crowley–martin functional response. Bull. Korean Math. Soc. 48(3), 555–574 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, M., Wang, K.: Persistence and extinction of a stochastic single-species model under regieme switching in a polluted environment. J. Theor. Biol. 264(3), 934–944 (2010)

    Article  Google Scholar 

  16. Jovanović, M., Krstić, M.: Stochastically perturbed vector-borne disease models with direct transmission. Appl. Math. Modell. 36, 5214–5228 (2012)

    Article  MATH  Google Scholar 

  17. Li, Y.Q., Gao, H.L.: Existence, uniqueness and global asymptotic stability of positive solutions of a predator–prey system with Holling II functional response with random perturbation. Nonlinear Anal. Theory Method. Appl. 68(6), 1694–1705 (2008)

    Article  MATH  Google Scholar 

  18. Perc, M., Szolnoki, A.: Coevolutionary games—A mini review. BIoSystems 99, 109–125 (2010)

    Article  Google Scholar 

  19. Cheng, S.R.: Stochastic population systems. Stoch. Anal. Appl. 27, 854–874 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhou, Y.L., Zhang, W.G., Yuan, S.L.: Survival and stationary distribution in a stochastic SIS model. Discret. Dyn. Nature Soc. (2013). doi:10.1155/2013/592821

  21. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  22. Mao, X., Marion, G., Renshaw, E.: Environmental brownian noise suppresses explosions in populations dynamics. Stoch. Process. Appl. 97(1), 95–110 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems. J. Math. Anal. Appl. 375(2), 443–457 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discret. Contin. Dyn. Syst. 24(2), 523–593 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mao, X.: Stochastic versions of the Lassalle Theorem. J. Differ. Equ. 153, 175–195 (1999)

    Article  MATH  Google Scholar 

  26. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer Publishing, Berlin (1991)

    MATH  Google Scholar 

  27. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM 43(3), 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

   The research have been supported by The Natural Science Foundation of China (11261004) and The Natural Science Foundation of Jiangxi Province(20122BAB211010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, S., Fan, K. et al. On the dynamics of a stochastic ratio-dependent predator–prey model with a specific functional response. J. Appl. Math. Comput. 48, 441–460 (2015). https://doi.org/10.1007/s12190-014-0812-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0812-3

Keywords

Navigation