Skip to main content
Log in

Local Type II metrics with holonomy in \({\mathrm {G}}_2^*\)

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

A list of possible holonomy groups with indecomposable holonomy representation contained in the exceptional, non-compact Lie group \({\mathrm {G}}_2^{*}\) was provided by Fino and Kath. The classification is due to the corresponding holonomy algebras and divided into Type I, II and III, depending on the dimension of the socle being 1, 2 or 3, respectively. It was also shown by Fino and Kath that all algebras of Type I, and by the author that all of Type III are indeed realizable as holonomy algebras by metrics with signature (4, 3). This article proves that this is also true for all Type II algebras. Thus, there exists a realization by a metric for all indecomposable holonomy groups contained in \({\mathrm {G}}_2^{*}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, W., Singer, I.M.: A theorem on holonomy. Trans. Am. Math. Soc. 75(3), 428–443 (1953)

    Article  MathSciNet  Google Scholar 

  2. Berger, M.: Sur les groupes d’holonomie homogene des variétés a connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    Article  MathSciNet  Google Scholar 

  3. Bezvitnaya, N.I.: Holonomy groups of pseudo-quaternionic-kählerian manifolds of non-zero scalar curvature. Ann. Glob. Anal. Geom. 39(1), 99–105 (2011). https://doi.org/10.1007/s10455-010-9234-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126(3), 525–576 (1987)

    Article  MathSciNet  Google Scholar 

  5. Cartan, E.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 54, 214–264 (1926). https://doi.org/10.24033/bsmf.1105

    Article  MathSciNet  MATH  Google Scholar 

  6. Engel, F.: Ein neues, dem linearen Komplexe analoges Gebilde. Ber. Sächsischen Akad. Wiss. 52(63–76), 220–239 (1900)

    MATH  Google Scholar 

  7. Fino, A., Kath, I.: Holonomy groups of \(G_2^{\ast }\)-manifolds (2016). arXiv:1604.00528v1

  8. Fino, A., Kath, I.: Local Type I Metrics with Holonomy in \({{\rm G}}_{2}^*\) (2018). https://doi.org/10.3842/SIGMA.2018.081

  9. Fino, A., Luján, I.: Torsion-free G*2(2)-structures with full holonomy on nilmanifolds. Adv. Geom. 15(3), 381–392 (2015). https://doi.org/10.1515/advgeom-2015-0015

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory, Springer study edition edn. Springer, New York (2004). (Includes bibliographical references and index)

    Book  Google Scholar 

  11. Galaev, A.S.: Holonomy algebras of Einstein pseudo-Riemannian manifolds. J. Lond. Math. Soc. 98(2), 393–415 (2018). https://doi.org/10.1112/jlms.12135

    Article  MathSciNet  MATH  Google Scholar 

  12. Galaev, A.S.: Holonomy classification of Lorentz–Kähler manifolds. J. Geom. Anal. (2018). https://doi.org/10.1007/s12220-018-0027-1

    Article  MATH  Google Scholar 

  13. Graham, C.R., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split \(G_2\). J. Differ. Geom. 92, 463–506 (2012). https://doi.org/10.4310/jdg/1354110197

    Article  MATH  Google Scholar 

  14. Kath, I.: \(G_{2(2)}^{\ast }\)-structures on pseudo-Riemannian manifolds. J. Geom. Phys. 27(3–4), 155–177 (1998)

    Article  MathSciNet  Google Scholar 

  15. Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76(3), 423–484 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ozeki, H.: Infinitesimal holonomy groups of bundle connections. Nagoya Math. J. 10, 105–123 (1956)

    Article  MathSciNet  Google Scholar 

  17. Volkhausen, C.: Local Type III metrics with holonomy in \(\rm G_2^*\). Ann. Glob. Anal. Geom. 56(1), 113 (2019). https://doi.org/10.1007/s10455-019-09659-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Ines Kath for her useful comments and advice on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Volkhausen.

Additional information

Communicated by Vicente Cortés.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Local functions used for (a) adapted coframes \((b^i)\). (b) (quasi-)normalforms of the basis \(b^i\). Functions not listed are identically zero

The appendix is to read as follows: Table 2 provides how the basis \(b^i\) is expressed in terms of local functions \(f^j_{i}\) and coordinates \(x_i\) on M. Instead of using the general expression

$$\begin{aligned} b^i = {\mathrm {e}}^{f_i^i}{\mathrm {d}}x_i + \sum _{j \ne i, j \ge 4} f^{j}_{i} {\mathrm {d}}x_j \end{aligned}$$

we assign a certain letter to local functions of each \(b^i\) as in the example. Thus, we express \(b^1,\ldots ,b^7\) as

$$\begin{aligned} b^1&= {\mathrm {d}}x_1+ \sum _{ i \ge 4} r_i \, {\mathrm {d}}x_i\;,\qquad b^2 = {\mathrm {d}}x_2 + \sum _{i \ge 4} s_i \, {\mathrm {d}}x_i\;,\qquad b^3 = {\mathrm {d}}x_3 + \sum _{i \ge 6} t_i \,{\mathrm {d}}x_i\;,\\ b^4&= {\mathrm {d}}x_4 + \sum _{i \ge 6} u_i \, {\mathrm {d}}x_i\;, \qquad b^5 = {\mathrm {d}}x_5 + \sum _{i \ge 6} v_i \, {\mathrm {d}}x_i\;,\qquad b^6 = {\mathrm {e}}^{w_6}\,{\mathrm {d}}x_6 + w_7\, {\mathrm {d}}x_7\;,\\ b^7&= {\mathrm {e}}^{z_7}\,{\mathrm {d}}x_7 {\,}, \end{aligned}$$

where \(i \in \{4,\ldots ,7\}\) and \(r_i,s_i,t_i,u_i,v_i,w_i,z_i\) are local functions. Note, there are only a few cases where \(w_6, z_7 \ne 0\) and we dropped all functions which are not needed further.

In the following subsections local functions which generate the particular holonomy algebra in each case of Theorem 3 are listed. Since dependencies on local coordinates vary from case to case, they are not listed. Instead, they can be extracted in each case from Table 2.

Since the calculations themselves are quite lengthy and somewhat repetitive, they are not given here. Readers interested in details can obtain the Maple files used to compute the holonomy algebras via the author’s website and on request. In case of any questions or problems with these files do not hesitate to contact the author.

Type II 1

Let \(\mathfrak {a} \in \{\mathfrak {gl}(2,\mathbb {R}), \mathfrak {sl}(2,\mathbb {R})\}\) and \(\mathfrak {h} = \mathfrak {a}\ltimes \mathfrak {n}\).

figure a

Type II 2

Let \(\mathfrak {a}\in \left\{ \mathfrak {co}(2),\mathbb {R}\cdot C_a \right\} \) and \(\mathfrak {h} = \mathfrak {a}\ltimes \mathfrak {n}\) or \(\mathfrak {h}=\mathfrak {a}\ltimes Z_0\).

figure b
figure c
figure d

Type II 3

\(\mathfrak {a} = \mathfrak {d}\) and \(\mathfrak {h} = \mathfrak {a}\ltimes \mathfrak {n_1}\), where \(\mathfrak {n}_1 \in \left\{ \mathfrak {n},\mathfrak {n}(1,3),\mathfrak {n}(2,3),\mathfrak {n}(1,2,3),\mathfrak {n}(1,2,4) \right\} \).

figure e
figure f

Type II 4

Let \(\mathfrak {a}=\mathbb {R}\cdot \mathrm {diag}(1,\mu )\).

(a) \(\mathfrak {h}=\mathfrak {a}\ltimes \mathfrak {n_1}, \mu \in [-1,1),\gamma =1-\mu \),

where \(\mathfrak {n}_1 \in \left\{ \mathfrak {n},\mathfrak {n}(2,3),\mathfrak {n}(1,2,3),\mathfrak {n}(1,2,4),\mathfrak {n}(1,3,4),\mathfrak {n}(2,3,4)\right\} \).

figure g

(b) \(\mathfrak {h}=h\left( \mathrm {diag}(1,\frac{1}{2}),(1,0,0,0),0\right) \ltimes \mathfrak {n_1}\), where \(\mathfrak {n}_1 \in \left\{ \mathfrak {n}(2,3),\mathfrak {n}(2,3,4)\right\} \).

figure h

(c) \(\mu =0\) and \(\mathfrak {h}=\mathfrak {a}\ltimes \mathfrak {n}(2,4)\) or \(\mathfrak {h}=\mathbb {R}\cdot h\left( \mathrm {diag}(1,0),(0,1,0,0),0\right) \ltimes \mathfrak {n}_1\), \(\mathfrak {n}_1 \in \left\{ \mathfrak {n}(1,4), \mathfrak {n}(3,4),\mathfrak {n}(1,3,4)\right\} \).

figure i

Type II 5

(a) Let \(\mathfrak {h} = \mathfrak {n}_1\), where \(\mathfrak {n}_1 \in \left\{ \mathfrak {n},\mathfrak {n}(1,3),\mathfrak {n}(2,3),\mathfrak {n}(1,2,4),\mathfrak {n}(2,3,4),Z_1,Z_2,Z_3,Z_4,Z_5 \right\} \).

figure j

(b) Let \(\mathfrak {h} = \mathbb {R}\cdot I \ltimes \mathfrak {n}_1\), where \( \mathfrak {n}_1 \in \left\{ \mathfrak {n},\mathfrak {n}(1,3),\mathfrak {n}(2,3),\mathfrak {n}(1,2,4),\mathfrak {n}(2,3,4),Z_1,Z_2,\right. \left. Z_3,Z_4,Z_5 \right\} \).

figure k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkhausen, C. Local Type II metrics with holonomy in \({\mathrm {G}}_2^*\). Abh. Math. Semin. Univ. Hambg. 89, 179–201 (2019). https://doi.org/10.1007/s12188-019-00213-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-019-00213-8

Keywords

Mathematics Subject Classification

Navigation