Skip to main content
Log in

Abstract

Stein (Pac J Math 59:567–575, 1975) proposed the following conjecture: if the edge set of \(K_{n,n}\) is partitioned into n sets, each of size n, then there is a partial rainbow matching of size \(n-1\). He proved that there is a partial rainbow matching of size \(n(1-\frac{D_n}{n!})\), where \(D_n\) is the number of derangements of [n]. This means that there is a partial rainbow matching of size about \((1- \frac{1}{e})n\). Using a topological version of Hall’s theorem we improve this bound to \(\frac{2}{3}n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamaszek, M., Barmak, J.A.: On a lower bound for the connectivity of the independence complex of a graph. Discrete Math. 311, 2566–2569 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aharoni, R., Alon, N., Berger, E.: Eigenvalues of \(K_{1,k}\)-free graphs and the connectivity of their independence complexes J. Graph Theory 83, 384–391 (2016)

  3. Aharoni, R., Alon, N., Berger, E., Chudnovsky, M., Kotlar, D., Loebl, M., Ziv, R.: Fair representation by independent sets. Discrete Math (to appear)

  4. Aharoni, R., Berger, E., Ziv, R.: Independent systems of representatives in weighted graphs. Combinatorica 27, 253–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aharoni, R., Gorelik, I., Narins, L.: A bound on the connectivity of line graphs (unpublished)

  6. Aharoni, R., Haxell, P.: Hall’s theorem for hypergraphs. J. Graph Theory 35, 83–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Björner, A., Lovász, L., Vrecica, S.T., Zivaljevic, R.T.: Chessboard complexes and matching complexes. J. Lond. Math. Soc. 49, 25–39 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  9. Hatami, P., Shor, P.W.: A lower bound for the length of a partial transversal in a Latin square. J. Combin. Theory A 115, 1103–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haxell, P.E.: A condition for matchability in hypergraphs. Graphs Combin. 11, 245–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, G.P.: Complete subgraphs of r-partite graphs. Combin. Probab. Comput. 1, 241–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koksma, K.K.: A lower bound for the order of a partial transversal of a Latin square. J. Combin. Theory 7, 94–95 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meshulam, R.: The clique complex and hypergraph matching. Combinatorica 21, 89–94 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meshulam, R.: Domination numbers and homology. J. Combin. Theory Ser. A 102, 321–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ryser, H.J.: Neuere Probleme der Kombinatorik, pp. 69–91. Oberwolfach, Matematisches Forschungsinstitut (Oberwolfach, Germany), July, Vorträge über Kombinatorik (1967)

  16. Shor, P.W.: A lower bound for the length of a partial transversal in a Latin square. J. Combin. Theory Ser. A 33, 1–8 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shareshian, J., Wachs, M.L.: Top homology of hypergraph matching complexes, p-cycle complexes and Quillen complexes of symmetric groups. J. Algebra 322, 2253–2271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stein, S.K.: Transversals of Latin squares and their generalizations. Pac. J. Math. 59, 567–575 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Woolbright, D.E.: An \(n\times n\) Latin square has a transversal with at least \(n-\sqrt{n}\) distinct elements. J. Combin. Theory Ser. A 24, 235–237 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuster, R.: Independent transversals in r-partite graphs. Discrete Math. 176, 255–261 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Aharoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharoni, R., Berger, E., Kotlar, D. et al. On a conjecture of Stein. Abh. Math. Semin. Univ. Hambg. 87, 203–211 (2017). https://doi.org/10.1007/s12188-016-0160-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-016-0160-3

Keywords

Mathematics Subject Classification

Navigation