Skip to main content
Log in

Highly sensitive detection of Epstein-Barr virus-infected cells by EBER flow FISH

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

When Epstein-Barr virus (EBV) infection is suspected, identification of infected cells is important to understand the pathogenesis, determinine the treatment strategy, and predict the prognosis. We used the PrimeFlow™ RNA Assay Kit with a probe to detect EBV-encoded small RNAs (EBERs) and multiple surface markers, to identify EBV-infected cells by flow cytometry. We analyzed a total of 24 patients [11 with chronic active EBV disease (CAEBV), 3 with hydroa vacciniforme lymphoproliferative disorder, 2 with X-linked lymphoproliferative disease type 1 (XLP1), 2 with EBV-associated hemophagocytic lymphohistiocytosis, and 6 with posttransplant lymphoproliferative disorder (PTLD)]. We compared infected cells using conventional quantitative PCR methods and confirmed that infected cell types were identical in most patients. Patients with CAEBV had widespread infection in T and NK cells, but a small amount of B cells were also infected, and infection in patients with XLP1 and PTLD was not limited to B cells. EBV-associated diseases are believed to be complex pathologies caused by EBV infecting a variety of cells other than B cells. We also demonstrated that infected cells were positive for HLA-DR in patients with CAEBV. EBER flow FISH can identify EBV-infected cells with high sensitivity and is useful for elucidating the pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets for this article are not publicly available due to concerns regarding participant/patient anonymity. Requests to access the datasets should be directed to the corresponding author.

Abbreviations

CAEBV:

Chronic active EBV disease

EBERs:

EBV-encoded small RNAs

EBV:

Epstein-Barr virus

EBV-HLH:

EBV-associated hemophagocytic lymphohistiocytosis

HCT:

Hematopoietic cell transplantation

HV-LPD:

Hydroa vacciniforme lymphoproliferative disorder

IM:

Infectious mononucleosis

PTLD:

Posttransplant lymphoproliferative disorder

qPCR:

Quantitative PCR

SMBA:

Severe mosquito bite allergy

XLP1:

X-linked lymphoproliferative disease type 1

References

  1. Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343:481–92.

    Article  CAS  PubMed  Google Scholar 

  2. Fournier B, Latour S. Immunity to EBV as revealed by immunedeficiencies. Curr Opin Immunol. 2021;72:107–15.

    Article  CAS  PubMed  Google Scholar 

  3. Just T, Burgwald H, Broe MK. Flow cytometric detection of EBV (EBER snRNA) using peptide nucleic acid probes. J Virol Methods. 1998;73:163–74.

    Article  CAS  PubMed  Google Scholar 

  4. Kimura H, Miyake K, Yamauchi Y, Nishiyama K, Iwata S, Iwatsuki K, et al. Identification of Epstein-Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases. J Infect Dis. 2009;200:1078–87.

    Article  CAS  PubMed  Google Scholar 

  5. Kawabe S, Ito Y, Gotoh K, Kojima S, Matsumoto K, Kinoshita T, et al. Application of flow cytometric in situ hybridization assay to Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Cancer Sci. 2012;103:1481–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fournier B, Boutboul D, Bruneau J, Miot C, Boulanger C, Malphettes M, et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J Exp Med. 2020;217: e20192262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohga S, Ishimura M, Yoshimoto G, Miyamoto T, Takada H, Tanaka T, et al. Clonal origin of Epstein-Barr virus (EBV)-infected T/NK-cell subpopulations in EBV-positive T/NK-cell lymphoproliferative disorders of childhood. J Clin Virol. 2011;51:31–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kanegane H, Wado T, Nunogami K, Seki H, Taniguchi N, Tosato G. Chronic persistent Epstein-Barr virus infection of natural killer cells and B cells associated with granular lymphocytes expansion. Br J Haematol. 1996;95:116–22.

    Article  CAS  PubMed  Google Scholar 

  9. Arai A. Advances in the study of chronic active Epstein-Barr virus infection: clinical features under the 2016 WHO classification and mechanisms of development. Front Pediatr. 2019;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Quintanilla-Martinez L, Swerdlow SH, Tousseyn T, Barrionuevo C, Nakamura S, Jaffe ES. New concepts in EBV-associated B, T, and NK cell lymphoproliferative disorders. Virchows Arch. 2023;482:227–44.

    Article  CAS  PubMed  Google Scholar 

  11. Meazza R, Tuberosa C, Cetica V, Falco M, Parolini S, Grieve S, et al. Diagnosing XLP1 in patients with hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2014;134:1381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.

    Article  PubMed  Google Scholar 

  13. Loren AW, Porter DL, Stadtmauer EA, Tsai DE. Post-transplant lymphoproliferative disorder: a review. Bone Marrow Transplant. 2003;31:145–55.

    Article  CAS  PubMed  Google Scholar 

  14. Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S, et al. Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay. J Clin Microbiol. 1999;37:132–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe Y, Sasahara Y, Satoh M, Looi CY, Katayama S, Suzuki T, et al. A case series of CAEBV of children and young adults treated with reduced-intensity conditioning and allogeneic bone marrow transplantation: a single-center study. Eur J Haematol. 2013;91:242–8.

    Article  PubMed  Google Scholar 

  16. Kimura H, Hoshino Y, Kanegane H, Tsuge I, Okamura T, Kawa K, et al. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood. 2001;98:280–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kimura H, Ito Y, Kawabe S, Gotoh K, Takahashi Y, Kojima S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–86.

    Article  CAS  PubMed  Google Scholar 

  18. Okuno Y, Murata T, Sato Y, Muramatsu H, Ito Y, Watanabe T, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4:404–13.

    Article  CAS  PubMed  Google Scholar 

  19. J Wang M Su N Wei H Yan J Zhang Y Gong et al 2023 Chronic active Epstein-Barr virus disease originates from infected hematopoietic stem cells [published online ahead of print, 2023 Oct 12]. Blood blood.2023021074.

  20. Iwatsuki K, Miyake T, Hirai Y, Yamamoto T. Hydroa vacciniforme: a distinctive form of Epstein-Barr virus-associated T-cell lymphoproliferative disorders. Eur J Dermatol. 2019;29:21–8.

    Article  PubMed  Google Scholar 

  21. Toga A, Wada T, Sakakibara Y, Mase S, Araki R, Tone Y, et al. Clinical significance of cloned expansion and CD5 down-regulation in Epstein-Barr Virus (EBV)-infected CD8+ T lymphocytes in EBV-associated hemophagocytic lymphohistiocytosis. J Infect Dis. 2010;201:1923–32.

    Article  CAS  PubMed  Google Scholar 

  22. Yang X, Wada T, Imadome K, Nishida N, Mukai T, Fujiwara M, et al. Characterization of Epstein-Barr virus (EBV)-infected cells in EBV-associated hemophagocytic lymphohistiocytosis in two patients with X-linked lymphoproliferative syndrome type 1 and type 2. Herpesviridae. 2012;3:1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Al-Mansour Z, Nelson BP, Evens AM. Post-transplant lymphoproliferative disease (PTLD): risk factors, diagnosis, and current treatment strategies. Curr Hematol Malig Rep. 2013;8:173–83.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li Q, Spriggs MK, Kovats S, Turk SM, Comeau MR, Nepom B, et al. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol. 1997;71(6):4657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients to participate in this study.

Funding

This work was supported by MEXT/JSPS KAKENHI (Grant Number: 22K07887) and Daiichi Sankyo Scholarship Donation Program to HK.

Author information

Authors and Affiliations

Authors

Contributions

DT, Akihiro H and HK wrote the manuscript. DT, KT, and YH performed EBER-FISH. Ken-Ichi I performed beads sorting qPCR. Ko K, SA, MS, MY, KE, MI, YT, Keiji I, KO, Asahito H, KS, TT, KG, Haruka O, AI, Kaori K, Takako M, SE, Hidenori O, YS, and AA collected the patient data. BF, Tomohiro M and SL provided critical discussion. HK conceptualized the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Akihiro Hoshino or Hirokazu Kanegane.

Ethics declarations

Conflict of interests

All authors declare that they have no relevant conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomomasa, D., Tanita, K., Hiruma, Y. et al. Highly sensitive detection of Epstein-Barr virus-infected cells by EBER flow FISH. Int J Hematol (2024). https://doi.org/10.1007/s12185-024-03786-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-024-03786-0

Keywords

Navigation