Skip to main content
Log in

Regulation of von Willebrand factor by ADAMTS13 ameliorates lipopolysaccharide-induced lung injury in mice

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The relationship between von Willebrand factor (VWF) and inflammation has attracted considerable attention in recent years. VWF, which is stored in the Weibel–Palade bodies (WPBs) of endothelial cells (ECs), is released from WPBs in response to inflammatory stimuli and is thought to contribute to inflammation by promoting leukocyte extravasation. In this study, lung injury model mice were produced by intratracheal injection with lipopolysaccharides. The severity of lung inflammation was evaluated in mice with different genotypes (wild-type, Vwf−/−, Adamts13−/−) and mice treated with drugs that inhibit VWF function. Lung inflammation was significantly ameliorated in Vwf−/− mice compared with wild-type mice. Furthermore, inflammation was significantly suppressed in wild-type mice treated with anti-VWF A1 antibody or recombinant human ADAMTS13 compared with the untreated control group. The underlying mechanism appears to be an increased VWF/ADAMTS13 ratio at the site of inflammation and the interaction between blood cell components, such as leukocytes and platelets, and the VWF A1 domain, which promotes leukocyte infiltration into the lung. This study suggested that ADAMTS13 protein and other VWF-targeting agents may be a novel therapeutic option for treatment of pulmonary inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated in the current study are available from the corresponding author on reasonable request.

References

  1. Soejima K, Mimura N, Hirashima M, Maeda H, Hamamoto T, Nakagaki T, et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem. 2001;130:475–80.

    Article  CAS  PubMed  Google Scholar 

  2. Shida Y, Nishio K, Sugimoto M, Mizuno T, Hamada M, Kato S, et al. Functional imaging of shear-dependent activity of ADAMTS13 in regulating mural thrombus growth under whole blood flow conditions. Blood. 2008;111:1295–8.

    Article  CAS  PubMed  Google Scholar 

  3. Soejima K, Nakamura H, Hirashima M, Morikawa W, Nozaki C, Nakagaki T. Analysis on the molecular species and concentration of circulating ADAMTS13 in Blood. J Biochem. 2006;139:147–54.

    Article  CAS  PubMed  Google Scholar 

  4. Soejima K, Nakagaki T. Interplay between ADAMTS13 and von Willebrand factor in inherited and acquired thrombotic microangiopathies. Semin Hematol. 2005;42:56–62.

    Article  CAS  PubMed  Google Scholar 

  5. O’Brien M. The reciprocal relationship between inflammation and coagulation. Top Companion Anim Med. 2012;27:46–52.

    Article  PubMed  Google Scholar 

  6. Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38:S26-34.

    Article  CAS  PubMed  Google Scholar 

  7. Pendu R, Terraube V, Christophe OD, Gahmberg CG, de Groot PG, Lenting PJ, et al. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006;108:3746–52.

    Article  CAS  PubMed  Google Scholar 

  8. Denis CV, André P, Saffaripour S, Wagner DD. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proc Natl Acad Sci USA. 2001;98:4072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hillgruber C, Steingräber AK, Pöppelmann B, Denis CV, Ware J, Vestweber D, et al. Blocking von Willebrand factor for treatment of cutaneous inflammation. J Invest Dermatol. 2014;134:77–86.

    Article  CAS  PubMed  Google Scholar 

  10. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Culleré M, Hynes RO, et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci. 1998;95:9524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banno F, Kokame K, Okuda T, Honda S, Miyata S, Kato H, et al. Complete deficiency in ADAMTS13 is prothrombotic, but it alone is not sufficient to cause thrombotic thrombocytopenic purpura. Blood. 2006;107:3161–6.

    Article  CAS  PubMed  Google Scholar 

  12. Parry GC, Erlich JH, Carmeliet P, Luther T, Mackman N. Low levels of tissue factor are compatible with development and hemostasis in mice. J Clin Invest. 1998;101:560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pedersen B, Holscher T, Sato Y, Pawlinski R, Mackman N. A balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adult mice. Blood. 2005;105:2777–82.

    Article  CAS  PubMed  Google Scholar 

  14. Soejima K, Matsumoto M, Kokame K, Yagi H, Ishizashi H, Maeda H, et al. ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood. 2003;102:3232–7.

    Article  CAS  PubMed  Google Scholar 

  15. Shima M, Morimoto J, Imai S, Tsubura Y, Yoshioka A, Fukui H. Production and characterization of monoclonal antibodies against von Willebrand factor (vWF). Blood & Vessel. 1985;16:205–7.

    Article  Google Scholar 

  16. Fujimura Y, Usami Y, Titani K, Niinomi K, Nishio K, Takase T, et al. Studies on anti-von Willebrand factor (vWF) monoclonal antibody NMC-4, which inhibits both ristocetin- and botrocetin-induced vWF binding to platelet glycoprotein Ib. Blood. 1991;77:113–20.

    Article  CAS  PubMed  Google Scholar 

  17. Celikel R, Varughese KI, Madhusudan, Yoshioka A, Ware J, Ruggeri ZM. Crystal structure of the von Willebrand factor A1 domain in complex with the function blocking NMC-4 Fab. Nat Struct Biol. 1998;5:189–94.

  18. Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion. 2006;46:1444–52.

    Article  CAS  PubMed  Google Scholar 

  19. Chun CD, Liles WC, Frevert CW, Glenny RW, Altemeier WA. Mechanical ventilation modulates Toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: a controlled animal study. BMC Pulm Med. 2010;10:57.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bastarache JA, Sebag SC, Clune JK, Grove BS, Lawson WE, Janz DR, et al. Low levels of tissue factor lead to alveolar haemorrhage, potentiating murine acute lung injury and oxidative stress. Thorax. 2012;67:1032–9.

    Article  PubMed  Google Scholar 

  21. Petri B, Broermann A, Li H, Khandoga AG, Zarbock A, Krombach F, et al. von Willebrand factor promotes leukocyte extravasation. Blood. 2010;116:4712–9.

    Article  CAS  PubMed  Google Scholar 

  22. Fujioka M, Hayakawa K, Mishima K, Kunizawa A, Irie K, Higuchi S, et al. ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating postischemic hypoperfusion. Blood. 2010;115:1650–3.

    Article  CAS  PubMed  Google Scholar 

  23. Fujioka M, Nakano T, Hayakawa K, Irie K, Akitake Y, Sakamoto Y, et al. ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol Sci. 2012;33:1107–15.

    Article  PubMed  Google Scholar 

  24. De Meyer SF, Savchenko AS, Haas MS, Schatzberg D, Carroll MC, Schiviz A, et al. Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice. Blood. 2012;120:5217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Doi M, Matsui H, Takeda H, Saito Y, Takeda M, Matsunari Y, et al. ADAMTS13 safeguards the myocardium in a mouse model of acute myocardial infarction. Thromb Haemost. 2012;108:1236–8.

    Article  PubMed  Google Scholar 

  26. Gandhi C, Motto DG, Jensen M, Lentz SR, Chauhan AK. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischemia/reperfusion injury in mice. Blood. 2012;120:5224–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schiviz A, Wuersch K, Piskernik C, Dietrich B, Hoellriegl W, Rottensteiner H, et al. A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13. Blood. 2012;119:6128–35.

    Article  CAS  PubMed  Google Scholar 

  28. Pillai VG, Bao J, Zander CB, McDaniel JK, Chetty PS, Seeholzer SH, et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128:110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernardo A, Ball C, Nolasco L, Moake JF, Dong J-F. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104:100–6.

    Article  CAS  PubMed  Google Scholar 

  30. Fu X, Chen J, Gallagher R, Zheng Y, Chung DW, López JA. Shear stress–induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region. Blood. 2011;118:5283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Chen J, Ling M, López JA, Chung DW, Fu X. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem. 2015;290:1422–31.

    Article  PubMed  Google Scholar 

  32. Zheng L, Zhang D, Cao W, Song W-C, Zheng XL. Synergistic effects of ADAMTS13 deficiency and complement activation in pathogenesis of thrombotic microangiopathy. Blood. 2019;134:1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turner NA, Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. PLoS ONE. 2013;8: e59372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Shogo Kasuda (Department of Legal Medicine, Nara Medical University, Japan) and Koichi Kokame (National Cerebral and Cardiovascular Center, Japan) for their technical advice.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YO and KT; investigation: YO, YT, RK, RM, CO, and KT; formal analysis: YO and KT; data curation: YO and KT; writing—original draft: YO; writing—review and editing: YO, SM, CH. YT, AS, RK, RM, CO, KN, MS, KS, NM, MS, KT.

Corresponding author

Correspondence to Kohei Tatsumi.

Ethics declarations

Conflict of interest

AS, RK, KT and MS: members of Medicinal Biology of Thrombosis and Hemostasis established by Nara Medical University and Chugai Pharmaceutical Co., Ltd. RK: an employee of Chugai Pharmaceutical Co., Ltd. a stock owner of the company. KS: an employee of KM Biologics Co., Ltd. MS: patents for inventions relating to products of Chugai Pharmaceutical Co., Ltd.; representative of Medicinal Biology of Thrombosis and Hemostasis collaborative research laboratory; research support from Chugai Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd. and CSL Behring.; honoraria or consultation fees from Chugai Pharmaceutical Co., Ltd.; speaker’s bureau from Chugai Pharmaceutical Co., Ltd., CSL Behring, Sanofi, Bayer, Novo Nordisk Pharma, Takeda Pharmaceutical Co., Ltd., Pfizer and Fujimoto Seiyaku Corp. YO, SM, CH, YT, RM, CO, KN, MS, and NM: no conflict of financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onodera, Y., Mitani, S., Hosoda, C. et al. Regulation of von Willebrand factor by ADAMTS13 ameliorates lipopolysaccharide-induced lung injury in mice. Int J Hematol 118, 699–710 (2023). https://doi.org/10.1007/s12185-023-03668-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03668-x

Keywords

Navigation