Skip to main content
Log in

Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies

  • Progress in Hematology
  • Stem cell regulation and dynamics in myeloid malignancies
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hematopoiesis is maintained and regulated by a bone marrow-specific microenvironment called a niche. In hematological malignancies, tumor cells induce niche remodeling, and the reconstructed niche is closely linked to disease pathogenesis. Recent studies have suggested that extracellular vesicles (EVs) secreted from tumor cells play a principal role in niche remodeling in hematological malignancies. Although EVs are emerging as potential therapeutic targets, the underlying mechanism of action remains unclear, and selective inhibition remains a challenge. This review summarizes remodeling of the bone marrow microenvironment in hematological malignancies and its contribution to pathogenesis, as well as roles of tumor-derived EVs, and provides a perspective on future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No new data were created in this article.

References

  1. Mikkola HKA, Orkin SH. The journey of developing hematopoietic stem cells. Development (Camb, Engl). 2006;133(19):3733–44. https://doi.org/10.1242/dev.02568.

    Article  CAS  Google Scholar 

  2. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer. 2020;20(5):285–98. https://doi.org/10.1038/s41568-020-0245-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karantanou C, Minciacchi VR, Karantanos T. Extracellular vesicles in myeloid neoplasms. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23158827.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hayashi Y, Kawabata KC, Tanaka Y, Uehara Y, Mabuchi Y, Murakami K, et al. MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Rep. 2022. https://doi.org/10.1016/j.celrep.2022.110805.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yoshioka Y, Katsuda T, Ochiya T. Extracellular vesicles and encapusulated miRNAs as emerging cancer biomarkers for novel liquid biopsy. Jpn J Clin Oncol. 2018;48(10):869–76. https://doi.org/10.1093/jjco/hyy120.

    Article  PubMed  Google Scholar 

  6. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32. https://doi.org/10.1016/j.cell.2016.01.043.

    Article  CAS  PubMed  Google Scholar 

  7. Ohyashiki JH, Umezu T, Ohyashiki K. Extracellular vesicle-mediated cell-cell communication in haematological neoplasms. Philos Trans R Soc Lond B Biol Sci. 2018;373(1737):20160484. https://doi.org/10.1098/rstb.2016.0484.

    Article  CAS  PubMed  Google Scholar 

  8. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60. https://doi.org/10.1016/j.devcel.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  9. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833–46. https://doi.org/10.1038/nm.3647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lymperi S, Ferraro F, Scadden DT. The HSC niche concept has turned 31. Ann N Y Acad Sci. 2010;1192(1):12–8. https://doi.org/10.1111/j.1749-6632.2009.05223.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011;12(10):643–55. https://doi.org/10.1038/nrm3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;advance online publication. https://doi.org/10.1038/nature17624. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature17624.html#supplementary-information.

  13. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6. https://doi.org/10.1038/nature02040.

    Article  CAS  PubMed  Google Scholar 

  14. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258–64. https://doi.org/10.1182/blood-2003-11-4011.

    Article  CAS  PubMed  Google Scholar 

  15. Bowers M, Zhang B, Ho Y, Agarwal P, Chen CC, Bhatia R. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood. 2015;125(17):2678–88. https://doi.org/10.1182/blood-2014-06-582924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62. https://doi.org/10.1038/nature10783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227. https://doi.org/10.1038/nature11926. https://www.nature.com/articles/nature11926#supplementary-information.

  18. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99. https://doi.org/10.1016/j.immuni.2010.08.017.

    Article  CAS  PubMed  Google Scholar 

  19. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36. https://doi.org/10.1016/j.cell.2007.08.025.

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y, et al. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood. 2010;116(9):1422–32. https://doi.org/10.1182/blood-2009-08-239194.

    Article  CAS  PubMed  Google Scholar 

  21. Joseph C, Quach Julie M, Walkley Carl R, Lane Steven W, Lo Celso C, Purton LE. Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell. 2013;13(5):520–33. https://doi.org/10.1016/j.stem.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  22. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014;15(3):365–75. https://doi.org/10.1016/j.stem.2014.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell Metab. 2020. https://doi.org/10.1016/j.cmet.2020.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78–81. https://doi.org/10.1038/nature13383.

    Article  CAS  PubMed  Google Scholar 

  25. Sawada K, Sato N, Notoya A, Tarumi T, Hirayama S, Takano H, et al. Proliferation and differentiation of myelodysplastic CD34+ cells: phenotypic subpopulations of marrow CD34+ cells. Blood. 1995;85(1):194–202.

    Article  CAS  PubMed  Google Scholar 

  26. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852–7. https://doi.org/10.1038/nature08851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zambetti NA, Ping Z, Chen S, Kenswil KJG, Mylona MA, Sanders MA, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell. 2016;19(5):613–27. https://doi.org/10.1016/j.stem.2016.08.021.

    Article  CAS  PubMed  Google Scholar 

  28. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, et al. Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nat Genet. 2003;33(1):97–101. https://doi.org/10.1038/ng1062.

    Article  CAS  PubMed  Google Scholar 

  29. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506(7487):240–4. https://doi.org/10.1038/nature12883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong L, Yu WM, Zheng H, Loh ML, Bunting ST, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539(7628):304–8. https://doi.org/10.1038/nature20131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia. 2008;22(5):941–50. https://doi.org/10.1038/leu.2008.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. https://doi.org/10.1038/nature12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bianco P. Bone and the hematopoietic niche: a tale of two stem cells. Blood. 2011;117(20):5281–8. https://doi.org/10.1182/blood-2011-01-315069.

    Article  CAS  PubMed  Google Scholar 

  34. Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568(7753):541–5. https://doi.org/10.1038/s41586-019-1105-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krevvata M, Silva BC, Manavalan JS, Galan-Diez M, Kode A, Matthews BG, et al. Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood. 2014;124(18):2834–46. https://doi.org/10.1182/blood-2013-07-517219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frisch BJ, Ashton JM, Xing L, Becker MW, Jordan CT, Calvi LM. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood. 2012;119(2):540–50. https://doi.org/10.1182/blood-2011-04-348151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2017. https://doi.org/10.1038/leu.2017.259.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weidner H, Rauner M, Trautmann F, Schmitt J, Balaian E, Mies A, et al. Myelodysplastic syndromes and bone loss in mice and men. Leukemia. 2017;31(4):1003–7. https://doi.org/10.1038/leu.2017.7.

    Article  CAS  PubMed  Google Scholar 

  39. Datzmann T, Trautmann F, Tesch F, Mies A, Hofbauer LC, Platzbecker U, et al. Associations of myeloid hematological diseases of the elderly with osteoporosis: a longitudinal analysis of routine health care data. Leuk Res. 2018;69:81–6. https://doi.org/10.1016/j.leukres.2018.04.010.

    Article  PubMed  Google Scholar 

  40. Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513–7. https://doi.org/10.1038/nm.3364. http://www.nature.com/nm/journal/v19/n11/abs/nm.3364.html#supplementary-information.

  41. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99. https://doi.org/10.1016/j.stem.2013.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li AJ, Calvi LM. The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression. Exp Hematol. 2017;55:3–18. https://doi.org/10.1016/j.exphem.2017.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim PG, Niroula A, Shkolnik V, McConkey M, Lin AE, Słabicki M, et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J Exp Med. 2021. https://doi.org/10.1084/jem.20211872.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rohatgi N, Zou W, Collins PL, Brestoff JR, Chen TH, Abu-Amer Y, et al. ASXL1 impairs osteoclast formation by epigenetic regulation of NFATc1. Blood Adv. 2018;2(19):2467–77. https://doi.org/10.1182/bloodadvances.2018018309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic targeting of the leukaemia microenvironment. Int J Mol Sci. 2021;22(13):6888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goloviznina NA, Verghese SC, Yoon YM, Taratula O, Marks DL, Kurre P. Mesenchymal stromal cell-derived extracellular vesicles promote myeloid-biased multipotent hematopoietic progenitor expansion via toll-like receptor engagement. J Biol Chem. 2016;291(47):24607–17. https://doi.org/10.1074/jbc.M116.745653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morhayim J, van de Peppel J, Braakman E, Rombouts EWJC, ter Borg MND, Dudakovic A, et al. Osteoblasts secrete miRNA-containing extracellular vesicles that enhance expansion of human umbilical cord blood cells. Sci Rep. 2016;6(1):32034. https://doi.org/10.1038/srep32034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30(11):2221–31. https://doi.org/10.1038/leu.2016.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morhayim J, Ghebes CA, Erkeland SJ, ter Borg MND, Hoogenboezem RM, Bindels EMJ, et al. Identification of osteolineage cell-derived extracellular vesicle cargo implicated in hematopoietic support. FASEB J. 2020;34(4):5435–52. https://doi.org/10.1096/fj.201902610R.

    Article  CAS  PubMed  Google Scholar 

  50. Kfoury YS, Ji F, Mazzola M, Sykes DB, Scherer AK, Anselmo A, et al. tiRNA signaling via stress-regulated vesicle transfer in the hematopoietic niche. Cell Stem Cell. 2021;28(12):2090-103.e9. https://doi.org/10.1016/j.stem.2021.08.014.

    Article  CAS  PubMed  Google Scholar 

  51. Gu H, Chen C, Hao X, Wang C, Zhang X, Li Z, et al. Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. J Clin Investig. 2016;126(12):4537–53. https://doi.org/10.1172/JCI87105.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang J, Woulfe DS, Papoutsakis ET. Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells. Blood. 2014;124(13):2094–103. https://doi.org/10.1182/blood-2014-01-547927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi X-F, Wang H, Kong F-X, Xu Q-Q, Xiao F-J, Yang Y-F, et al. Exosomal miR-486 regulates hypoxia-induced erythroid differentiation of erythroleukemia cells through targeting Sirt1. Exp Cell Res. 2017;351(1):74–81. https://doi.org/10.1016/j.yexcr.2016.12.023.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang J, Kao C-Y, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells? J Control Release. 2017;247:1–18. https://doi.org/10.1016/j.jconrel.2016.12.021.

    Article  CAS  PubMed  Google Scholar 

  55. Kovuru N, Raghuwanshi S, Gutti RK. Exosome mediated differentiation of megakaryocytes: a study on TLR mediated effects. J Thromb Thrombolysis. 2019;48(1):171–3. https://doi.org/10.1007/s11239-019-01862-5.

    Article  CAS  PubMed  Google Scholar 

  56. Qu M, Zou X, Fang F, Wang S, Xu L, Zeng Q, et al. Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun. 2020;11(1):4964. https://doi.org/10.1038/s41467-020-18802-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Horiguchi H, Kobune M, Kikuchi S, Yoshida M, Murata M, Murase K, et al. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms. Haematologica. 2016. https://doi.org/10.3324/haematol.2015.134932.

    Article  PubMed  PubMed Central  Google Scholar 

  58. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

    Article  CAS  PubMed  Google Scholar 

  59. Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93. https://doi.org/10.1016/j.molmed.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peng D, Wang H, Li L, Ma X, Chen Y, Zhou H, et al. miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia. 2018;32(5):1180–8. https://doi.org/10.1038/s41375-018-0015-2.

    Article  CAS  PubMed  Google Scholar 

  61. Marleau AM, Chen C-S, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med. 2012;10(1):134. https://doi.org/10.1186/1479-5876-10-134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10(5):619–24. https://doi.org/10.1038/ncb1725.

    Article  CAS  PubMed  Google Scholar 

  63. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci. 2009;106(10):3794–9. https://doi.org/10.1073/pnas.0804543106.

    Article  PubMed  PubMed Central  Google Scholar 

  64. del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor–bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604–11. https://doi.org/10.1182/blood-2004-03-1095.

    Article  CAS  PubMed  Google Scholar 

  65. Mandal SK, Iakhiaev A, Pendurthi UR, Rao LVM. Acute cholesterol depletion impairs functional expression of tissue factor in fibroblasts: modulation of tissue factor activity by membrane cholesterol. Blood. 2005;105(1):153–60. https://doi.org/10.1182/blood-2004-03-0990.

    Article  CAS  PubMed  Google Scholar 

  66. Thind A, Wilson C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J Extracell Vesicles. 2016;5(1):31292. https://doi.org/10.3402/jev.v5.31292.

    Article  CAS  PubMed  Google Scholar 

  67. Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015;6:7029. https://doi.org/10.1038/ncomms8029.

    Article  CAS  PubMed  Google Scholar 

  68. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE. 2011;6(9):e24234. https://doi.org/10.1371/journal.pone.0024234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, Beerling E, et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–57. https://doi.org/10.1016/j.cell.2015.04.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, et al. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracell Ves. 2022;11(4):e12196. https://doi.org/10.1002/jev2.12196.

    Article  CAS  Google Scholar 

  71. Somiya M, Kuroda SI. Engineering of extracellular vesicles for small molecule-regulated cargo loading and cytoplasmic delivery of bioactive proteins. Mol Pharm. 2022;19(7):2495–505. https://doi.org/10.1021/acs.molpharmaceut.2c00192.

    Article  CAS  PubMed  Google Scholar 

  72. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Ves. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by AMED (22gm6210022h0003), JSPS KAKENHI (20H00537 (DI), 20K21622 (DI), 20J01911(YH), 21K16258(YH)), a grant from SENSHIN Medical Research Foundation (DI), TERUMO LIFE SCIENCE FOUNDATION (DI), Daiwa Securities Health Foundation (DI), The MEXT Joint Research Center program, Yokohama City University (DI), and Nippon Shinyaku (YH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasutaka Hayashi or Daichi Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Nishimura, K., Tanaka, A. et al. Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies. Int J Hematol 117, 821–829 (2023). https://doi.org/10.1007/s12185-023-03587-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03587-x

Keywords

Navigation