Skip to main content

Advertisement

Log in

Frontiers in pathophysiology and management of thrombotic thrombocytopenic purpura

  • Progress in Hematology
  • Progress in pathophysiology and treatment of thrombocytopenia
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Thrombotic thrombocytopenic purpura (TTP) is a fatal disease in which platelet-rich microthrombi cause end-organ ischemia and damage. TTP is caused by markedly reduced ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity. Hereditary or congenital TTP (cTTP) is caused by ADAMTS13 gene mutations. In acquired or immune TTP (iTTP), ADAMTS13 activity is reduced by anti-ADAMTS13 autoantibodies. TTP is characterized by thrombocytopenia, hemolytic anemia, fever, renal dysfunction, and neuropsychiatric symptoms. Therapeutic plasma exchange (TPE) and immunosuppressive therapy are the mainstays of treatment. As untreated TTP has a high mortality rate, immediate initiation of TPE is recommended when TTP is suspected. Conventionally, corticosteroids have been used for immunosuppressive therapy. Current drug therapies include rituximab, an anti-CD20 antibody that is effective in newly diagnosed cases and refractory cases, as well as for relapse prevention, and caplacizumab, an anti- von Willebrand factor (VWF) nanobody that inhibits the binding of platelets to VWF and prevents microthrombi formation. Recombinant human ADAMTS13 is a promising treatment for cTTP. Although these therapeutic advances have improved the outcomes of TTP, early diagnosis and prompt initiation of appropriate therapy are necessary to achieve these outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Sadler JE. Pathophysiology of thrombotic thrombocytopenic purpura. Blood. 2017;130:1181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:654–66.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto M, Fujimura Y, Wada H, Kokame K, Miyakawa Y, Ueda Y, et al. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) 2017 in Japan. Int J Hematol. 2017;106:3–15.

    Article  PubMed  Google Scholar 

  4. Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B, et al. Von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339:1578–84.

    Article  CAS  PubMed  Google Scholar 

  5. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339:1585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413:488–94.

    Article  CAS  PubMed  Google Scholar 

  7. Kokame K, Matsumoto M, Soejima K, Yagi H, Ishizashi H, Funato M, et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci USA. 2002;99:11902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45:139–60.

    Article  Google Scholar 

  9. Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18:2486–95.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lenting PJ, Christophe OD, Denis CV. Von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125:2019–28.

    Article  CAS  PubMed  Google Scholar 

  11. Uemura M, Tatsumi K, Matsumoto M, Fujimoto M, Matsuyama T, Ishikawa M, et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood. 2005;106:922–4.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider SW, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz RR, et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007;104:7899–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 2009;324:1330–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scheiflinger F, Knöbl P, Trattner B, Plaimauer B, Mohr G, Dockal M, et al. Nonneutralizing IgM and IgG antibodies to von Willebrand factor-cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood. 2003;102:3241–3.

    Article  CAS  PubMed  Google Scholar 

  15. Alwan F, Vendramin C, Vanhoorelbeke K, Langley K, McDonald V, Austin S, et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune-mediated thrombotic thrombocytopenic purpura. Blood. 2017;130:466–71.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrari S, Mudde GC, Rieger M, Veyradier A, Kremer Hovinga JA, Scheiflinger F. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2009;7:1703–10.

    Article  CAS  PubMed  Google Scholar 

  17. Sakai K, Matsumoto M, De Waele L, Dekimpe C, Hamada E, Kubo M, et al. ADAMTS13 conformation and immunoprofiles in Japanese patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv. 2022;140:2790–1.

    Article  CAS  PubMed  Google Scholar 

  18. Rieger M, Mannucci PM, Kremer Hovinga JA, Herzog A, Gerstenbauer G, Konetschny C, et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood. 2005;106:1262–7.

    Article  CAS  PubMed  Google Scholar 

  19. Bettoni G, Palla R, Valsecchi C, Consonni D, Lotta LA, Trisolini SM, et al. ADAMTS-13 activity and autoantibodies classes and subclasses as prognostic predictors in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10:1556–65.

    Article  CAS  PubMed  Google Scholar 

  20. Luken BM, Turenhout EA, Hulstein JJ, Van Mourik JA, Fijnheer R, Voorberg J. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 2005;93:267–74.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng XL, Wu HM, Shang D, Falls E, Skipwith CG, Cataland SR, et al. Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura. Haematologica. 2010;95:1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kangro K, Roose E, Joly BS, Sinkovits G, Falter T, von Auer C, et al. Anti-ADAMTS13 autoantibody profiling in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv. 2021;5:3427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klaus C, Plaimauer B, Studt JD, Dorner F, Lämmle B, Mannucci PM, et al. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood. 2004;103:4514–9.

    Article  CAS  PubMed  Google Scholar 

  24. Pos W, Sorvillo N, Fijnheer R, Feys HB, Kaijen PH, Vidarsson G, et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica. 2011;96:1670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pos W, Crawley JT, Fijnheer R, Voorberg J, Lane DA, Luken BM. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood. 2010;115:1640–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. South K, Luken BM, Crawley JT, Phillips R, Thomas M, Collins RF, et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci USA. 2014;111:18578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muia J, Zhu J, Gupta G, Haberichter SL, Friedman KD, Feys HB, et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci USA. 2014;111:18584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deforche L, Roose E, Vandenbulcke A, Vandeputte N, Feys HB, Springer TA, et al. Linker regions and flexibility around the metalloprotease domain account for conformational activation of ADAMTS-13. J Thromb Haemost. 2015;13:2063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao W, Anderson PJ, Sadler JE. Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity. Blood. 2008;112:1713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roose E, Schelpe AS, Joly BS, Peetermans M, Verhamme P, Voorberg J, et al. An open conformation of ADAMTS-13 is a hallmark of acute acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2018;16:378–88.

    Article  CAS  PubMed  Google Scholar 

  31. Roose E, Schelpe AS, Tellier E, Sinkovits G, Joly BS, Dekimpe C, et al. Open ADAMTS13, induced by antibodies, is a biomarker for subclinical immune-mediated thrombotic thrombocytopenic purpura. Blood. 2020;136:353–61.

    PubMed  Google Scholar 

  32. De Waele L, Curie A, Kangro K, Tellier E, Kaplanski G, Männik A, et al. Anti-cysteine/spacer antibodies that open ADAMTS13 are a common feature in iTTP. Blood Adv. 2021;5:4480–4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Scully M, Brown J, Patel R, McDonald V, Brown CJ, Machin S. Human leukocyte antigen association in idiopathic thrombotic thrombocytopenic purpura: evidence for an immunogenetic link. J Thromb Haemost. 2010;8:257–62.

    Article  CAS  PubMed  Google Scholar 

  34. Coppo P, Busson M, Veyradier A, Wynckel A, Poullin P, Azoulay E, et al. HLA-DRB1*11: a strong risk factor for acquired severe ADAMTS13 deficiency-related idiopathic thrombotic thrombocytopenic purpura in Caucasians. J Thromb Haemost. 2010;8:856–9.

    Article  CAS  PubMed  Google Scholar 

  35. John ML, Hitzler W, Scharrer I. The role of human leukocyte antigens as predisposing and/or protective factors in patients with idiopathic thrombotic thrombocytopenic purpura. Ann Hematol. 2012;91:507–10.

    Article  CAS  PubMed  Google Scholar 

  36. Sakai K, Kuwana M, Tanaka H, Hosomichi K, Hasegawa A, Uyama H, et al. HLA loci predisposing to immune TTP in Japanese: potential role of the shared ADAMTS13 peptide bound to different HLA-DR. Blood. 2020;135:2413–9.

    Article  PubMed  Google Scholar 

  37. Sorvillo N, van Haren SD, Kaijen PH, ten Brinke A, Fijnheer R, Meijer AB, et al. Preferential HLA-DRB1*11-dependent presentation of CUB2-derived peptides by ADAMTS13-pulsed dendritic cells. Blood. 2013;121:3502–10.

    Article  CAS  PubMed  Google Scholar 

  38. Verbij FC, Fijnheer R, Voorberg J, Sorvillo N. Acquired TTP: ADAMTS13 meets the immune system. Blood Rev. 2014;28:227–34.

    Article  CAS  PubMed  Google Scholar 

  39. Fujimura Y, Matsumoto M, Isonishi A, Yagi H, Kokame K, Soejima K, et al. Natural history of Upshaw-Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost. 2011;9(Suppl 1):283–301.

    Article  CAS  PubMed  Google Scholar 

  40. Alwan F, Vendramin C, Liesner R, Clark A, Lester W, Dutt T, et al. Characterization and treatment of congenital thrombotic thrombocytopenic purpura. Blood. 2019;133:1644–51.

    Article  CAS  PubMed  Google Scholar 

  41. van Dorland HA, Taleghani MM, Sakai K, Friedman KD, George JN, Hrachovinova I, et al. The international hereditary thrombotic thrombocytopenic purpura registry: key findings at enrollment until 2017. Haematologica. 2019;104:2107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. von Krogh AS, Quist-Paulsen P, Waage A, Langseth ØO, Thorstensen K, Brudevold R, et al. High prevalence of hereditary thrombotic thrombocytopenic purpura in central Norway: from clinical observation to evidence. J Thromb Haemost. 2016;14:73–82.

    Article  Google Scholar 

  43. Lotta LA, Wu HM, Mackie IJ, Noris M, Veyradier A, Scully MA, et al. Residual plasmatic activity of ADAMTS13 is correlated with phenotype severity in congenital thrombotic thrombocytopenic purpura. Blood. 2012;120:440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moatti-Cohen M, Garrec C, Wolf M, Boisseau P, Galicier L, Azoulay E, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood. 2012;119:5888–97.

    Article  CAS  PubMed  Google Scholar 

  45. Scully M, Thomas M, Underwood M, Watson H, Langley K, Camilleri RS, et al. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood. 2014;124:211–9.

    Article  CAS  PubMed  Google Scholar 

  46. Rock GA, Shumak KH, Buskard NA, Blanchette VS, Kelton JG, Nair RC, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian apheresis study group. N Engl J Med. 1991;325:393–7.

    Article  CAS  PubMed  Google Scholar 

  47. Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158:323–35.

    Article  PubMed  Google Scholar 

  48. Pereira A, Mazzara R, Monteagudo J, Sanz C, Puig L, Martínez A, et al. Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a multivariate analysis of factors predicting the response to plasma exchange. Ann Hematol. 1995;70:319–23.

    Article  CAS  PubMed  Google Scholar 

  49. Bendapudi PK, Hurwitz S, Fry A, Marques MB, Waldo SW, Li A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4:e157–64.

    Article  PubMed  Google Scholar 

  50. Coppo P, Schwarzinger M, Buffet M, Wynckel A, Clabault K, Presne C, et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS ONE. 2010;5: e10208.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li A, Khalighi PR, Wu Q, Garcia DA. External validation of the PLASMIC score: a clinical prediction tool for thrombotic thrombocytopenic purpura diagnosis and treatment. J Thromb Haemost. 2018;16:164–9.

    Article  CAS  PubMed  Google Scholar 

  52. Cataland SR, Kourlas PJ, Yang S, Geyer S, Witkoff L, Wu H, et al. Cyclosporine or steroids as an adjunct to plasma exchange in the treatment of immune-mediated thrombotic thrombocytopenic purpura. Blood Adv. 2017;1:2075–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Froissart A, Buffet M, Veyradier A, Poullin P, Provôt F, Malot S, et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French thrombotic microangiopathies reference center. Crit Care Med. 2012;40:104–11.

    Article  CAS  PubMed  Google Scholar 

  54. Sun L, Mack J, Li A, Ryu J, Upadhyay VA, Uhl L, et al. Predictors of relapse and efficacy of rituximab in immune thrombotic thrombocytopenic purpura. Blood Adv. 2019;3:1512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kubo M, Sakai K, Yoshii Y, Hayakawa M, Matsumoto M. Rituximab prolongs the time to relapse in patients with immune thrombotic thrombocytopenic purpura: analysis of off-label use in Japan. Int J Hematol. 2020;112:764–72.

    Article  CAS  PubMed  Google Scholar 

  56. Scully M, McDonald V, Cavenagh J, Hunt BJ, Longair I, Cohen H, et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood. 2011;118:1746–53.

    Article  CAS  PubMed  Google Scholar 

  57. Westwood JP, Thomas M, Alwan F, McDonald V, Benjamin S, Lester WA, et al. Rituximab prophylaxis to prevent thrombotic thrombocytopenic purpura relapse: outcome and evaluation of dosing regimens. Blood Adv. 2017;1:1159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hie M, Gay J, Galicier L, Provôt F, Presne C, Poullin P, et al. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura. Blood. 2014;124:204–10.

    Article  CAS  PubMed  Google Scholar 

  59. Al-Samkari H, Grace RF, Connors JM. Ofatumumab for acute treatment and prophylaxis of a patient with multiple relapses of acquired thrombotic thrombocytopenic purpura. J Thromb Thrombolysis. 2018;46:81–3.

    Article  PubMed  Google Scholar 

  60. Robertz J, Andres M, Mansouri Taleghani B, Koneth I, Binet I, Kremer Hovinga JA. Obinutuzumab in two patients suffering from immune-mediated thrombotic thrombocytopenic purpura intolerant to rituximab. Am J Hematol. 2019;94:E259–61.

    Article  PubMed  Google Scholar 

  61. Eskazan AE. Bortezomib therapy in patients with relapsed/refractory acquired thrombotic thrombocytopenic purpura. Ann Hematol. 2016;95:1751–6.

    Article  CAS  PubMed  Google Scholar 

  62. van den Berg J, Kremer Hovinga JA, Pfleger C, Hegemann I, Stehle G, Holbro A, et al. Daratumumab for immune thrombotic thrombocytopenic purpura. Blood Adv. 2022;6:993–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knöbl P, Wu H, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374:511–22.

    Article  CAS  PubMed  Google Scholar 

  64. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Kremer Hovinga JA, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380:335–46.

    Article  CAS  PubMed  Google Scholar 

  65. Peyvandi F, Cataland S, Scully M, Coppo P, Knoebl P, Kremer Hovinga JA, et al. Caplacizumab prevents refractoriness and mortality in acquired thrombotic thrombocytopenic purpura: integrated analysis. Blood Adv. 2021;5:2137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coppo P, Cuker A, George JN. Thrombotic thrombocytopenic purpura: toward targeted therapy and precision medicine. Res Pract Thromb Haemost. 2019;3:26–37.

    Article  PubMed  Google Scholar 

  67. Völker LA, Kaufeld J, Miesbach W, Brähler S, Reinhardt M, Kühne L, et al. Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood Adv. 2020;4:3085–92.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Coppo P, Bubenheim M, Azoulay E, Galicier L, Malot S, Bigé N, et al. A regimen with caplacizumab, immunosuppression, and plasma exchange prevents unfavorable outcomes in immune-mediated TTP. Blood. 2021;137:733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dutt T, Shaw RJ, Stubbs M, Yong J, Bailiff B, Cranfield T, et al. Real-world experience with caplacizumab in the management of acute TTP. Blood. 2021;137:1731–40.

    Article  CAS  PubMed  Google Scholar 

  70. Pascual Izquierdo MC, Mingot-Castellano ME, Kerguelen Fuentes AE, Peinado G-AJ, Cid J, Jiménez M, et al. Real-world effectiveness of caplacizumab vs standard of care in immune thrombotic thrombocytopenic purpura. Blood Adv. 2022;6:6219–27.

    Article  Google Scholar 

  71. Goshua G, Sinha P, Hendrickson JE, Tormey C, Bendapudi PK, Lee AI. Cost effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood. 2021;137:969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Minno G, Ravasio R. Cost-effectiveness analysis of caplacizumab in the new standard of care for immune thrombotic thrombocytopenic purpura in Italy. Grhta. 2021;8:43–52.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18:2496–502.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Scully M, Knöbl P, Kentouche K, Rice L, Windyga J, Schneppenheim R, et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood. 2017;130:2055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plaimauer B, Kremer Hovinga JA, Juno C, Wolfsegger MJ, Skalicky S, Schmidt M, et al. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost. 2011;9:936–44.

    Article  CAS  PubMed  Google Scholar 

  76. Jian C, Xiao J, Gong L, Skipwith CG, Jin SY, Kwaan HC, et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood. 2012;119:3836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ercig B, Graça NAG, Kangro K, Arfman T, Wichapong K, Hrdinová J, et al. N-glycan-mediated shielding of ADAMTS13 prevents binding of pathogenic autoantibodies in immune-mediated TTP. Blood. 2021;137:2694–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kremer Hovinga JA, Vesely SK, Terrell DR, Lämmle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115:1500–11.

    Article  PubMed  Google Scholar 

  79. Rizvi MA, Vesely SK, George JN, Chandler L, Duvall D, Smith JW, et al. Complications of plasma exchange in 71 consecutive patients treated for clinically suspected thrombotic thrombocytopenic purpura-hemolytic-uremic syndrome. Transfusion. 2000;40:896–901.

    Article  CAS  PubMed  Google Scholar 

  80. Chander DP, Loch MM, Cataland SR, George JN. Caplacizumab therapy without plasma exchange for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;381:92–4.

    Article  PubMed  Google Scholar 

  81. Völker LA, Brinkkoetter PT, Knöbl PN, Krstic M, Kaufeld J, Menne J, et al. Treatment of acquired thrombotic thrombocytopenic purpura without plasma exchange in selected patients under caplacizumab. J Thromb Haemost. 2020;18:3061–6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Riva S, Mancini I, Maino A, Ferrari B, Artoni A, Agosti P, et al. Long-term neuropsychological sequelae, emotional wellbeing and quality of life in patients with acquired thrombotic thrombocytopenic purpura. Haematologica. 2020;105:1957–62.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alwan F, Mahdi D, Tayabali S, Cipolotti L, Lakey G, Hyare H, et al. Cerebral MRI findings predict the risk of cognitive impairment in thrombotic thrombocytopenic purpura. Br J Haematol. 2020;191:868–74.

    Article  CAS  PubMed  Google Scholar 

  84. Chaturvedi S, Oluwole O, Cataland S, McCrae KR. Post-traumatic stress disorder and depression in survivors of thrombotic thrombocytopenic purpura. Thromb Res. 2017;151:51–6.

    Article  CAS  PubMed  Google Scholar 

  85. George JN. TTP: long-term outcomes following recovery. Hematol Am Soc Hematol Educ Program. 2018;2018:548–52.

    Article  Google Scholar 

  86. Brodsky MA, Sukumar S, Selvakumar S, Yanek L, Hussain S, Mazepa MA, et al. Major adverse cardiovascular events in survivors of immune-mediated thrombotic thrombocytopenic purpura. Am J Hematol. 2021;96:1587–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK reviewed the articles on TTP and wrote the manuscript. MM reviewed and edited the manuscript.

Corresponding author

Correspondence to Masanori Matsumoto.

Ethics declarations

Conflict of interest

MM is an inventor of the ELISA used to assess ADAMTS13 activity and has received research funds from Chugai Pharmaceutical and lecture fees from Sanofi, Alexion Pharmaceuticals, and Takeda Pharmaceutical. MK has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubo, M., Matsumoto, M. Frontiers in pathophysiology and management of thrombotic thrombocytopenic purpura. Int J Hematol 117, 331–340 (2023). https://doi.org/10.1007/s12185-023-03552-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03552-8

Keywords

Navigation