Skip to main content

Advertisement

Log in

The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing

  • Progress in Hematology
  • The path from stem cells to red blood cells
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Early erythroid progenitors known as CFU-e undergo multiple self-renewal cell cycles. The CFU-e developmental stage ends with the onset of erythroid terminal differentiation (ETD). The transition from CFU-e to ETD is a critical cell fate decision that determines erythropoietic rate. Here we review recent insights into the regulation of this transition, garnered from flow cytometric and single-cell RNA sequencing studies. We find that the CFU-e/ETD transition is a rapid S phase-dependent transcriptional switch. It takes place during an S phase that is much shorter than in preceding or subsequent cycles, as a result of globally faster replication forks. Furthermore, it is preceded by cycles in which G1 becomes gradually shorter. These dramatic cell cycle and S phase remodeling events are directly linked to regulation of the CFU-e/ETD switch. Moreover, regulators of erythropoietic rate exert their effects by modulating cell cycle duration and S phase speed. Glucocorticoids increase erythropoietic rate by inducing the CDK inhibitor p57KIP2, which slows replication forks, inhibiting the CFU-e/ETD switch. Conversely, erythropoietin promotes induction of ETD by shortening the cycle. S phase shortening was reported during cell fate decisions in non-erythroid lineages, suggesting a fundamentally new developmental role for cell cycle speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8): e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, Regan M, Weatherall D, Chou DP, Eisele TP, Flaxman SR, Pullan RL, Brooker SJ, Murray CJ. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Axelrad AA, McLeod DL, Shreeve MM, Heath DS. Properties of cells that produce erythrocytic colonies in vitro. In: Robinson WA, ed. Hemopoiesis in culture. Washington, D.C.: US Government Printing Office; 1974, p. 226.

  4. Heath DS, Axelrad AA, McLeod DL, Shreeve MM. Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood. 1976;47(5):777–92.

    Article  CAS  PubMed  Google Scholar 

  5. Iscove NN, Sieber F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol. 1975;3(1):32–43.

    CAS  PubMed  Google Scholar 

  6. Gregory CJ, McCulloch EA, Till JE. Erythropoietic progenitors capable of colony formation in culture: state of differentiation. J Cell Physiol. 1973;81(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  7. Gregory CJ, Tepperman AD, McCulloch EA, Till JE. Erythropoietic progenitors capable of colony formation in culture: response of normal and genetically anemic W-W-V mice to manipulations of the erythron. J Cell Physiol. 1974;84(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Gregory CJ. Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J Cell Physiol. 1976;89(2):289–301.

    Article  CAS  PubMed  Google Scholar 

  9. Broudy VC, Lin NL, Priestely GV, Nocka K, Wolf NS. Interaction of stem cell factor and its receptor c-kit mediates lodgement and acute expansion of hematopoietic cells in the murine spleen. Blood. 1996;88:75–81.

    Article  CAS  PubMed  Google Scholar 

  10. Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007;109(10):4494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. von Lindern M, Schmidt U, Beug H. Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton’s tyrosine kinase. Cell Cycle. 2004;3(7):876–9.

    Article  Google Scholar 

  12. Socolovsky M, Fallon AEJ, Lodish HF. The prolactin receptor rescues EpoR−/− erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood. 1998;92(5):1491–6.

    Article  CAS  PubMed  Google Scholar 

  13. Papayannopoulou T, Finch CA. On the in vivo action of erythropoietin: a quantitative analysis. J Clin Investig. 1972;51(5):1179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Schutz G, Beug H. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999;13(22):2996–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, Lowenberg B, Beug H. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94(2):550–9.

    Article  Google Scholar 

  16. Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M, Gribnau J, Socolovsky M. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol. 2010;8(9):e1000484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell. 1995;83:59–67.

    Article  CAS  PubMed  Google Scholar 

  18. Oudelaar AM, Beagrie RA, Gosden M, de Ornellas S, Georgiades E, Kerry J, Hidalgo D, Carrelha J, Shivalingam A, El-Sagheer AH, Telenius JM, Brown T, Buckle VJ, Socolovsky M, Higgs DR, Hughes JR. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat Commun. 2020;11(1):2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hwang Y, Futran M, Hidalgo D, Pop R, Iyer DR, Scully R, Rhind N, Socolovsky M. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch. Sci Adv. 2017;3: e1700298.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, Socolovsky M. Global DNA demethylation during mouse erythropoiesis in vivo. Science. 2011;334(6057):799–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, Waisman A, Huh JR, Klein AM, Socolovsky M. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 2018;555(7694):54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weinreb C, Wolock S, Klein AM. SPRING: a kinetic interface for visualizing high dimensional single-cell expression data. Bioinformatics. 2018;34(7):1246–8.

    Article  CAS  PubMed  Google Scholar 

  25. Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference from single-cell snapshots. Proc Natl Acad Sci USA. 2018;115(10):E2467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    Article  CAS  PubMed  Google Scholar 

  27. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.

    Article  CAS  PubMed  Google Scholar 

  28. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.

    Article  CAS  PubMed  Google Scholar 

  29. Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, Weinreb C, Wolock S, Hannah R, Diamanti E, Kent DG, Göttgens B, Wilson NK. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in kit mutant mice. Blood. 2018;131(21):e1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Gottgens B. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 2016;128(8):e20-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19(4):271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hwang Y, Hidalgo D, Socolovsky M. The shifting shape and functional specializations of the cell cycle during lineage development. WIREs Mech Dis. 2021;13(2): e1504.

    PubMed  Google Scholar 

  33. Eastman AE, Chen X, Hu X, Hartman AA, Pearlman Morales AM, Yang C, Lu J, Kueh HY, Guo S. Resolving cell cycle speed in one snapshot with a live-cell fluorescent reporter. Cell Rep. 2020;31(12): 107804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Porpiglia E, Hidalgo D, Koulnis M, Tzafriri AR, Socolovsky M. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities. PLoS Biol. 2012;10(8): e1001383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Scalf SM, Eastman AE, Chen J-J, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nat Commun. 2021;12(1):7334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nordman J, Orr-Weaver TL. Regulation of DNA replication during development. Development. 2012;139(3):455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJ, Koren A, Nussenzweig MC. Humoral immunity. T cell help controls the speed of the cell cycle in germinal center B cells. Science. 2015;349(6248):643–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashley RJ, Yan H, Wang N, Hale J, Dulmovits BM, Papoin J, Olive ME, Udeshi ND, Carr SA, Vlachos A, Lipton JM, Da Costa L, Hillyer C, Kinet S, Taylor N, Mohandas N, Narla A, Blanc L. Steroid resistance in diamond blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J Clin Investig. 2020;130(4):2097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu X, Eastman AE, Guo S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett. 2019;593(20):2840–52.

    Article  CAS  PubMed  Google Scholar 

  40. Bartholdy B, Lajugie J, Yan Z, Zhang S, Mukhopadhyay R, Greally JM, Suzuki M, Bouhassira EE. Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv. 2018;2(15):1833–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu Y, Mo Y, Ebenezer D, Bhattacharyya S, Liu H, Sundaravel S, Giricz O, Wontakal S, Cartier J, Caces B, Artz A, Nischal S, Bhagat T, Bathon K, Maqbool S, Gligich O, Suzuki M, Steidl U, Godley L, Skoultchi A, Greally J, Wickrema A, Verma A. High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem. 2013;288(13):8805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E, Rossi DJ, Meissner A. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell. 2012;47(4):633–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spradling A, Orr-Weaver T. Regulation of DNA replication during Drosophila development. Annu Rev Genet. 1987;21:373–403.

    Article  CAS  PubMed  Google Scholar 

  44. Foe VE. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development. 1989;107(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  45. Duronio RJ. Developing S-phase control. Genes Dev. 2012;26(8):746–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F, Huttner WB. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun. 2011;2:154.

    Article  PubMed  CAS  Google Scholar 

  47. Turrero Garcia M, Chang Y, Arai Y, Huttner WB. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex. J Comp Neurol. 2016;524(3):456–70.

    Article  CAS  PubMed  Google Scholar 

  48. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A. Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA. 2013;110(11):E1045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kornack DR, Rakic P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA. 1998;95(3):1242–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462(7273):595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic reprogramming from a privileged somatic cell state. Cell. 2014;156(4):649–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MS would like to thank her students, postdoctoral fellows, trainees and colleagues whose work is discussed in this article, and to thank Yung Hwang, Aishwarya Swaminathan and Ashley Winward for reading the manuscript. This work is supported by NIH Grants R01DK130498, R01DK120639 and R01HL141402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merav Socolovsky.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Socolovsky, M. The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing. Int J Hematol 116, 163–173 (2022). https://doi.org/10.1007/s12185-022-03406-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03406-9

Keywords

Navigation