Skip to main content
Log in

Induction of enucleation in primary and immortalized erythroid cells

  • Progress in Hematology
  • The path from stem cells to red blood cells
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14: e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood. 2008;2008(112):3927–38.

    Article  CAS  Google Scholar 

  3. Migliaccio AR, Masselli E, Varricchio L, Whitsett C. Ex-vivo expansion of red blood cells: how real for transfusion in humans? Blood Rev. 2012;26:81–95.

    Article  PubMed  Google Scholar 

  4. D’Alessandro A, Dzieciatkowska M, Nemkov T, Hansen KC. Red blood cell proteomics update: is there more to discover? Blood Transfus. 2017;15:182–7.

    PubMed  PubMed Central  Google Scholar 

  5. Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for life—properties of red blood cell deformability. Front Physiol. 2018;9:656.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sankaran VG, Ludwig LS, Sicinska E, Xu J, Bauer DE, Eng JC, et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 2012;26(18):2075–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simpson CF, Kling JM. The mechanism of denucleation in circulating erythroblasts. J Cell Biol. 1967;35(1):237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Awai M, Okada S, Takebayashi J, Kubo T, Inoue M, Seno S. Studies on the mechanism of denucleation of the erythroblast. Acta Haematol. 1968;39(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437:754–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boehm D, Mazurier C, Giarratana MC, Darghouth D, Faussat AM, Harmand L, et al. Caspase-3 is involved in the signalling in erythroid differentiation by targeting late progenitors. PLoS One. 2013;8: e62303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlile GW, Smith DH, Wiedmann M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood. 2004;103:4310–6.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao B, Mei Y, Schipma MJ, Roth EW, Bleher R, Rappoport JZ, et al. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening. Dev Cell. 2016;36:498–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhen R, Moo C, Zhao Z, Chen M, Feng H, Zheng X, et al. Wdr26 regulates nuclear condensation in developing erythroblasts. Blood. 2020;135:208–19.

    Article  PubMed  Google Scholar 

  15. Hattangadi SM, Martinez-Morilla S, Patterson HC, Shi J, Burke K, Avila-Figueroa A, et al. Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood. 2014;124:1931–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Figueroa AA, Fasano JD, Martinez-Morilla S, Venkatesan S, Kupfer G, Hattangadi SM. miR-181a regulates erythroid enucleation via the regulation of Xpo7 expression. Haematologica. 2018;103:e341–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Popova EY, Krauss SW, Short SA, Lee G, Villalobos J, Etzell J, et al. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosome Res. 2009;17:47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji P, Yeh V, Ramirez T, Murata-Hori M, Lodish HF. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica. 2010;95(12):2013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Li W, Schulz VP, Zhao H, Qu X, Qi Q, et al. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood. 2021;138(17):1615–27.

    Article  CAS  PubMed  Google Scholar 

  20. Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310–8.

    Article  CAS  PubMed  Google Scholar 

  21. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673–91.

    Article  CAS  PubMed  Google Scholar 

  22. Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life. 2020;72:106–18.

    Article  CAS  PubMed  Google Scholar 

  23. Gnanapragasam MN, Bieker JJ. Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr Opin Hematol. 2017;24:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995;375:316–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gnanapragasam MN, McGrath KE, Catherman S, Xue L, Palis J, Bieker JJ. EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood. 2016;128:1631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang CT, Ma R, Axton RA, Jackson M, Taylor AH, Fidanza A, et al. Activation of KLF1 enhances the differentiation and maturation of red blood cells from human pluripotent stem cells. Stem Cells. 2017;35:886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445:102–5.

    Article  CAS  PubMed  Google Scholar 

  28. Tyrkalska SD, Pérez-Oliva AB, Rodríguez-Ruiz L, Martínez-Morcillo FJ, Alcaraz-Pérez F, Martínez-Navarro FJ, et al. Inflammasome regulates hematopoiesis through cleavage of the master erythroid transcription factor GATA1. Immunity. 2019;51:50–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma WB, Wang XH, Li CY, Tian HH, Zhang J, Bi JJ, et al. GPS2 promotes erythroid differentiation by control of the stability of EKLF protein. Blood. 2020;135:2302–15.

    Article  PubMed  Google Scholar 

  30. Skutelsky E, Danon D. Comparative study of nuclear expulsion from the late erythroblast and cytokinesis. Exp Cell Res. 1970;60:427–36.

    Article  CAS  PubMed  Google Scholar 

  31. Guertin DA, Trautmann S, McCollum D. Cytokinesis in eukaryotes. Microbiol Mol Biol Rev. 2002;66:155–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell. 2005;123:75–87.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Ramirez T, Ji P, Jayapal SR, Lodish HF, Murata-Hori M. Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. J Cell Sci. 2012;125:340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rayment I. Kinesin and myosin: molecular motors with similar engines. Structure. 1996;4:501–4.

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi I, Ubukawa K, Sugawara K, Asanuma K, Guo YM, Yamashita J, et al. Erythroblast enucleation is a dynein-dependent process. Exp Hematol. 2016;44:247–56.

    Article  CAS  PubMed  Google Scholar 

  36. Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, et al. Trim58 degrades Dynein and regulates terminal erythropoiesis. Dev Cell. 2014;30:688–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koury ST, Koury MJ, Bondurant MC. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol. 1989;109:3005–13.

    Article  CAS  PubMed  Google Scholar 

  38. Ubukawa K, Guo YM, Takahashi M, Hirokawa M, Michishita Y, Nara M, et al. Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood. 2012;119:1036–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wickrema A, Koury ST, Dai CH, Krantz SB. Changes in cytoskeletal proteins and their mRNAs during maturation of human erythroid progenitor cells. J Cell Physiol. 1994;160:417–26.

    Article  CAS  PubMed  Google Scholar 

  40. Ji P, Jayapal SR, Lodish HF. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol. 2008;10:314–21.

    Article  CAS  PubMed  Google Scholar 

  41. Ubukawa K, Goto T, Asanuma K, Sasaki Y, Guo YM, Kobayashi I, et al. Cdc42 regulates cell polarization and contractile actomyosin rings during terminal differentiation of human erythroblasts. Sci Rep. 2020;10:11806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nowak RB, Papoin J, Gokhin DS, Casu C, Rivella S, Lipton JM, et al. Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood. 2017;130:1144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X, Mei Y, Yan B, Vitriol E, Huang S, Ji P, et al. Histone deacetylase 6 regulates cytokinesis and erythrocyte enucleation through deacetylation of formin protein mDia2. Haematologica. 2017;102:984–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sadoul K, Wang J, Diagouraga B, Vitte AL, Buchou T, Rossini T, et al. HDAC6 controls the kinetics of platelet activation. Blood. 2012;120:4215–8.

    Article  CAS  PubMed  Google Scholar 

  45. Keerthivasan G, Small S, Liu H, Wickrema A, Crispino JD. Vesicle trafficking plays a novel role in erythroblast enucleation. Blood. 2010;116:3331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keerthivasan G, Liu H, Gump JM, Dowdy SF, Wickrema A, Crispino JD. A novel role for survivin in erythroblast enucleation. Haematologica. 2012;97:1471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. An C, Huang Y, Li M, Xue F, Nie D, Zhao H, et al. Vesicular formation regulated by ERK/MAPK pathway mediates human erythroblast enucleation. Blood Adv. 2021;5:4648–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood. 2008;112:470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soni S, Bala S, Gwynn B, Sahr KE, Peters LL, Hanspal M. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem. 2006;281:20181–9.

    Article  CAS  PubMed  Google Scholar 

  50. Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19:429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS. Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood. 2019;133:1222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao B, Mei Y, Yang J, Ji P. Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis. Exp Hematol. 2016;44:975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bell AJ, Satchwell TJ, Heesom KJ, Hawley BR, Kupzig S, Hazell M, et al. Protein distribution during human erythroblast enucleation in vitro. PLoS One. 2013;8: e60300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M, et al. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 2016;16:1470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alvarez-Dominguez JR, Zhang X, Hu W. Widespread and dynamic translational control of red blood cell development. Blood. 2017;129:619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Neildez-Nguyen TM, Wajcman H, Marden MC, Bensidhoum M, Moncollin V, Giarratana MC, et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol. 2002;20:467–72.

    Article  CAS  PubMed  Google Scholar 

  57. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23:69–74.

    Article  CAS  PubMed  Google Scholar 

  58. Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol. 2006;24(10):1255–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Wang C, Wang L, Shen B, Guan X, Tian J, et al. Large-scale ex vivo generation of human red blood cells from cord blood CD34(+) cells. Stem Cells Transl Med. 2017;6:1698–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol. 2006;34:1635–42.

    Article  CAS  PubMed  Google Scholar 

  61. Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20:1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. 2016;5:1394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica. 2010;95:1651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 2019;28:1540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One. 2013;8: e59890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    Article  CAS  PubMed  Google Scholar 

  67. Trakarnsanga K, Griffiths RE, Wilson MC, Blair A, Satchwell TJ, Meinders M. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kurita R, Funato K, Abe T, Watanabe Y, Shiba M, Tadokoro K, et al. Establishment and characterization of immortalized erythroid progenitor cell lines derived from a common cell source. Exp Hematol. 2019;69:11–6.

    Article  CAS  PubMed  Google Scholar 

  69. Scully EJ, Shabani E, Rangel GW, Grüring C, Kanjee U, Clark MA, et al. Generation of an immortalized erythroid progenitor cell line from peripheral blood: a model system for the functional analysis of Plasmodium spp. invasion. Am J Hematol. 2019;94:963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Daniels DE, Ferguson DCJ, Griffiths RE, Trakarnsanga K, Cogan N, MacInnes KA, et al. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics. Mol Ther Methods Clin Dev. 2021;22:26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, et al. Direct generation of immortalized erythroid progenitor cell lines from peripheral blood mononuclear cells. Cells. 2021;10:523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Soboleva S, Kurita R, Kajitani N, Åkerstrand H, Miharada K. Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system. Hum Cell. 2022;35:408–17.

    Article  CAS  PubMed  Google Scholar 

  73. Huang X, Shah S, Wang J, Ye Z, Dowey SN, Tsang KM. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors. Mol Ther. 2014;22:451–63.

    Article  CAS  PubMed  Google Scholar 

  74. Hirose SI, Takayama N, Nakamura S, Nagasawa K, Ochi K, Hirata S, et al. Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells. Stem Cell Rep. 2013;1:499–508.

    Article  CAS  Google Scholar 

  75. Soboleva S, Kurita R, Ek F, Åkerstrand H, Silvério-Alves R, Olsson R, et al. Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Commun Biol. 2021;4:677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ryo Kurita, Martin L Olsson and Johan Flygare for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Miharada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soboleva, S., Miharada, K. Induction of enucleation in primary and immortalized erythroid cells. Int J Hematol 116, 192–198 (2022). https://doi.org/10.1007/s12185-022-03386-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03386-w

Keywords

Navigation