Skip to main content
Log in

Bringing mass spectrometry into the care of patients with multiple myeloma

  • Progress in Hematology
  • Novel technologies and innovative treatments in multiple myeloma
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Serum protein electrophoresis methods are widely employed to detect, quantify and isotype M-proteins for multiple myeloma patients. Increasing clinical demands to detect residual disease and interferences from new therapeutic monoclonal antibody treatments have stretched electrophoretic methods to their analytical limits. Newer techniques to detect M-proteins using mass spectrometry (MS) are emerging with improved clinical and analytical performance. These techniques are beginning to gain traction within the routine clinical lab testing. This review describes these MS methods with attention to the current and future roles such testing could play in the care of multiple myeloma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MM:

Multiple myeloma

Ig:

Immunoglobulin

SPEP:

Serum protein electrophoresis

IFE:

Immunofixation electrophoresis

sFLC:

Serum free light chain analysis

NGF:

Next-generation flow cytometry

NGS:

Next-generation sequencing

t-mAbs:

Therapeutic monoclonal antibodies

MS:

Mass spectrometry

MRD:

Minimal residual disease

miRAMM:

Monoclonal immunoglobulin rapid accurate mass measurements

MALDI-TOF:

Matrix-assisted laser desorption ionization time of flight

References

  1. Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.

    Article  PubMed  Google Scholar 

  2. Willrich MAV, Murray DL, Kyle RA. Laboratory testing for monoclonal gammopathies: focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clin Biochem. 2018;51:38–47.

    Article  CAS  PubMed  Google Scholar 

  3. Katzmann JA, Kyle RA, Benson J, Larson DR, Snyder MR, Lust JA, et al. Screening panels for detection of monoclonal gammopathies. Clin Chem. 2009;55(8):1517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dimopoulos M, Kyle R, Fermand JP, Rajkumar SV, San Miguel J, Chanan-Khan A, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117(18):4701–5.

    Article  CAS  PubMed  Google Scholar 

  5. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mills JR, Murray DL. Identification of friend or foe: the laboratory challenge of differentiating M-proteins from monoclonal antibody therapies. J Appl Lab Med: AACC Publ. 2017;1(4):421–31.

    Article  CAS  Google Scholar 

  8. Murray D, Barnidge D. Characterization of immunoglobulin by mass spectrometry with applications for the clinical laboratory. Crit Rev Clin Lab Sci. 2013;50(4–5):91–102.

    Article  CAS  PubMed  Google Scholar 

  9. Zajec M, Langerhorst P, VanDuijn MM, Gloerich J, Russcher H, van Gool AJ, et al. Mass spectrometry for identification, monitoring, and minimal residual disease detection of M-proteins. Clin Chem. 2020;66(3):421–33.

    Article  CAS  PubMed  Google Scholar 

  10. Barnidge DR, Tschumper RC, Theis JD, Snyder MR, Jelinek DF, Katzmann JA, et al. Monitoring M-Proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J Proteom Res. 2014;13:1905.

    Article  CAS  Google Scholar 

  11. Langerhorst P, Noori S, Zajec M, De Rijke YB, Gloerich J, van Gool AJ, et al. Multiple myeloma minimal residual disease detection: targeted mass spectrometry in blood vs next-generation sequencing in bone marrow. Clin Chem. 2021;67(12):1689–98.

    Article  PubMed  Google Scholar 

  12. Bergen HR 3rd, Dasari S, Dispenzieri A, Mills JR, Ramirez-Alvarado M, Tschumper RC, et al. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin Chem. 2016;62(1):243–51.

    Article  CAS  PubMed  Google Scholar 

  13. Noori S, Verkleij CPM, Zajec M, Langerhorst P, Bosman PWC, de Rijke YB, et al. Monitoring the M-protein of multiple myeloma patients treated with a combination of monoclonal antibodies: the laboratory solution to eliminate interference. Clin Chem Lab Med. 2021;59:1963.

    Article  CAS  PubMed  Google Scholar 

  14. Barnidge DR, Dasari S, Botz CM, Murray DH, Snyder MR, Katzmann JA, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res. 2014;13:1419.

    Article  CAS  PubMed  Google Scholar 

  15. Barnidge DRKTP, Griffin TJ, Murray DL. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to detect monoclonal immunoglobuli light chains in serum and urine. Rapid Commun Mass Spectrom. 2015;29:1–4.

    Article  CAS  Google Scholar 

  16. Mills JR, Kohlhagen MC, Dasari S, Vanderboom PM, Kyle RA, Katzmann JA, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem. 2016;62(10):1334–44.

    Article  CAS  PubMed  Google Scholar 

  17. Barnidge DR, Dasari S, Ramirez-Alvarado M, Fontan A, Willrich MA, Tschumper RC, et al. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry. J Proteome Res. 2014;13(11):5198–205.

    Article  CAS  PubMed  Google Scholar 

  18. Barnidge DR, Lundstrom SL, Zhang B, Dasari S, Murray DL, Zubarev RA. Subset of kappa and lambda germline sequences result in light chains with a higher molecular mass phenotype. J Proteome Res. 2015;14(12):5283–90.

    Article  CAS  PubMed  Google Scholar 

  19. Murray DL, Puig N, Kristinsson S, Usmani SZ, Dispenzieri A, Bianchi G, et al. Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an international myeloma working group mass spectrometry committee report. Blood Cancer J. 2021;11(2):24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Genzen JR, Murray DL, Abel G, Meng QH, Baltaro RJ, Rhoads DD, et al. Screening and diagnosis of monoclonal gammopathies: an international survey of laboratory practice. Arch Pathol Lab Med. 2017;142:507.

    Article  PubMed  Google Scholar 

  21. Kohlhagen M, Dasari S, Willrich M, Hetrick M, Netzel B, Dispenzieri A, et al. Automation and validation of a MALDI-TOF MS (Mass-Fix) replacement of immunofixation electrophoresis in the clinical lab. Clin Chem Lab Med. 2020;59:155.

    Article  PubMed  CAS  Google Scholar 

  22. Dasari S, Kohlhagen MC, Dispenzieri A, Willrich MAV, Snyder MR, Kourelis TV, et al. Detection of plasma cell disorders by mass spectrometry: a comprehensive review of 19,523 cases. Mayo Clin Proc. 2022;97(2):294–307.

    Article  CAS  PubMed  Google Scholar 

  23. Jimenez-Zepeda VH, Reece DE, Trudel S, Franke N, Winter A, Chen C, et al. Oligoclonal and monoclonal bands after single autologous stem cell transplant in patients with multiple myeloma: impact on overall survival and progression-free survival. Leuk Lymphoma. 2014;55(10):2284–9.

    Article  CAS  PubMed  Google Scholar 

  24. Willrich MA, Ladwig PM, Andreguetto BD, Barnidge DR, Murray DL, Katzmann JA, et al. Monoclonal antibody therapeutics as potential interferences on protein electrophoresis and immunofixation. Clin Chem Lab Med. 2016;54(6):1085–93.

    CAS  PubMed  Google Scholar 

  25. Moore LM, Cho S, Thoren KL. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. Clin Chim Acta; Int J Clin Chem. 2019;492:91–4.

    Article  CAS  Google Scholar 

  26. Kohlhagen MC, Mills JR, Willrich MAV, Dasari S, Dispenzieri A, Murray DL. Clearing drug interferences in myeloma treatment using mass spectrometry. Clin Biochem. 2021;92:61.

    Article  CAS  PubMed  Google Scholar 

  27. Mills JR, Kohlhagen MC, Willrich MAV, Kourelis T, Dispenzieri A, Murray DL. A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood. 2018;132(6):670–2.

    Article  CAS  PubMed  Google Scholar 

  28. Santockyte R, Puig O, Zheng N, Ouyang Z, Titsch C, Zhang YJ, et al. High-throughput therapeutic antibody interference-free high-resolution mass spectrometry assay for monitoring M-proteins in multiple myeloma. Anal Chem. 2021;93(2):834–42.

    Article  CAS  PubMed  Google Scholar 

  29. Abdallah N, Murray D, Dispenzieri A, Kapoor P, Gertz MA, Lacy MQ, et al. Tracking daratumumab clearance using mass spectrometry: implications on M protein monitoring and reusing daratumumab. Leukemia. 2022. https://doi.org/10.1038/s41375-021-01501-0.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kirchhoff DC, Murata K, Thoren KL. Use of a daratumumab-specific immunofixation assay to assess possible immunotherapy interference at a major cancer center: our experience and recommendations. J Appl Lab Med. 2021;6:1476.

    Article  PubMed  Google Scholar 

  31. Mellors PW, Kohlhagen MC, Dasari S, Willrich MAV, Gertz MA, Kumar SK, et al. Belantamab mafodotin detection by MASS-FIX and immunofixation. Clin Chem Lab Med. 2021;59(11):e430–3.

    Article  CAS  PubMed  Google Scholar 

  32. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR, et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med. 2006;354(13):1362–9.

    Article  CAS  PubMed  Google Scholar 

  33. Murray D, Kumar SK, Kyle RA, Dispenzieri A, Dasari S, Larson DR, et al. Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement. Blood Cancer J. 2019;9(12):102.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Milani P, Murray DL, Barnidge DR, Kohlhagen MC, Mills JR, Merlini G, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am J Hematol. 2017;92(8):772–9.

    Article  CAS  PubMed  Google Scholar 

  35. Puig N, Sanfeliciano TC, Agullo Roca C, Martinez-Lopez J, Oriol A, Blanchard MJ, et al. Mass spectrometry vs immunofixation for treatment monitoring in multiple myeloma. Blood Adv. 2022. https://doi.org/10.1182/bloodadvances.2021006762.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dispenzieri A, Krishnan A, Arendt B, Blackwell B, Wallace PK, Dasari S, et al. Mass-Fix better predicts for PFS and OS than standard methods among multiple myeloma patients participating on the STAMINA trial (BMT CTN 0702 /07LT). Blood Cancer J. 2022;12(2):27.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Giles HV, Cook MA, Drayson MT, Cook G, Wright NJ, North SJ, et al. Redefining nonmeasurable multiple myeloma using mass spectrometry. Blood. 2022;139(6):946–50.

    Article  CAS  PubMed  Google Scholar 

  38. Kohlhagen MC, Barnidge DR, Mills JR, Stoner J, Gurtner KM, Liptac AM, et al. Screening method for M-proteins in serum using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem. 2016;62(10):1345–52.

    Article  CAS  PubMed  Google Scholar 

  39. Eveillard M, Korde N, Ciardiello A, Diamond B, Lesokhin A, Mailankody S, et al. Using MALDI-TOF mass spectrometry in peripheral blood for the follow up of newly diagnosed multiple myeloma patients treated with daratumumab-based combination therapy. Clin Chim Acta; Int J Clin Chem. 2021;516:136–41.

    Article  CAS  Google Scholar 

  40. Sepiashvili L, Kohlhagen MC, Snyder MR, Willrich MAV, Mills JR, Dispenzieri A, et al. Direct detection of monoclonal free light chains in serum by use of immunoenrichment-coupled MALDI-TOF mass spectrometry. Clin Chem. 2019;65(8):1015–22.

    Article  CAS  PubMed  Google Scholar 

  41. Abeykoon JP, Murray DL, Murray I, Jevremovic D, Otteson GE, Dispenzieri A, et al. Implications of detecting serum monoclonal protein by MASS-fix following stem cell transplantation in multiple myeloma. Br J Haematol. 2021;193(2):380–5.

    Article  CAS  PubMed  Google Scholar 

  42. Derman BA, Stefka AT, Jiang K, McIver A, Kubicki T, Jasielec JK, et al. Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. Blood Cancer J. 2021;11(2):19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kumar S, Murray D, Dasari S, Milani P, Barnidge D, Madden B, et al. Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients. Leukemia. 2019;33(1):254–7.

    Article  CAS  PubMed  Google Scholar 

  44. Dispenzieri A, Larson DR, Rajkumar SV, Kyle RA, Kumar SK, Kourelis T, et al. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia. 2020;34(10):2749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sidana S, Murray DL, Dasari S, Go RS, Muchtar E, Willrich MA, et al. Glycosylation of immunoglobulin light chains is highly prevalent in cold agglutinin disease. Am J Hematol. 2020. https://doi.org/10.1002/ajh.25843.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Juskewitch JE, Murray JD, Norgan AP, Moldenhauer SK, Tauscher CD, Jacob EK, et al. In from the cold: M-protein light chain glycosylation is positively associated with cold agglutinin titer levels. Transfusion. 2021;61(4):1302–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Murray.

Ethics declarations

Conflict of interest

I have potential royalties for patents licensed to the Binding Site on the use of Mass Spectrometry to detect M-proteins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, D.L. Bringing mass spectrometry into the care of patients with multiple myeloma. Int J Hematol 115, 790–798 (2022). https://doi.org/10.1007/s12185-022-03364-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03364-2

Keywords

Navigation