Skip to main content

Advertisement

Log in

Successful preventive treatment with cyclosporine in a patient with relapsed/refractory immune-mediated thrombotic thrombocytopenic purpura: a case report and review of the literature

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Although salvage therapy with rituximab is effective in some cases of immune-mediated thrombotic thrombocytopenic purpura (iTTP) refractory to standard plasma exchange (PEX) and glucocorticoid treatment or relapsed after treatment, protocols to address the subsequent high recurrence rate have not been established. We describe the use of cyclosporine (CSA) to prevent recurrence in a patient with iTTP relapse after rituximab therapy, and present a literature review. A 24-year-old woman was diagnosed with iTTP and initially received PEX and high-dose methylprednisolone therapy. However, weekly rituximab therapy was also needed for inhibitor boosting to achieve additional immunosuppression during the initial treatment. Although the patient achieved clinical remission after weekly rituximab therapy, iTTP relapsed twice when glucocorticoids were tapered, and was treated with a triplet regimen consisting of PEX, high-dose methylprednisolone, and weekly rituximab. CSA was administered along with glucocorticoids as prophylaxis against iTTP relapse. The additional CSA therapy successfully maintained iTTP remission and allowed reduction of the corticosteroid dose. Our findings demonstrate that prophylactic CSA can potentially prevent iTTP recurrence in patients with a history of multiple relapses. Data from more cases must be accumulated to establish a useful prophylactic therapy for iTTP that is refractory even to rituximab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood. 2017;129(21):2836–46. https://doi.org/10.1182/blood-2016-10-709857.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18(10):2496–502. https://doi.org/10.1111/jth.15010.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miyakawa Y, Imada K, Ichinohe T, Nishio K, Abe T, Murata M, et al. Efficacy and safety of rituximab in Japanese patients with acquired thrombotic thrombocytopenic purpura refractory to conventional therapy. Int J Hematol. 2016;104(2):228–35. https://doi.org/10.1007/s12185-016-2019-x.

    Article  CAS  PubMed  Google Scholar 

  4. Froissart A, Buffet M, Veyradier A, Poullin P, Provot F, Malot S, et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med. 2012;40(1):104–11. https://doi.org/10.1097/CCM.0b013e31822e9d66.

    Article  CAS  PubMed  Google Scholar 

  5. Falter T, Herold S, Weyer-Elberich V, Scheiner C, Schmitt V, von Auer C, et al. Relapse rate in survivors of acute autoimmune thrombotic thrombocytopenic purpura treated with or without rituximab. Thromb Haemost. 2018;118(10):1743–51. https://doi.org/10.1055/s-0038-1668545.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kubo M, Sakai K, Yoshii Y, Hayakawa M, Matsumoto M. Rituximab prolongs the time to relapse in patients with immune thrombotic thrombocytopenic purpura: analysis of off-label use in Japan. Int J Hematol. 2020;112(6):764–72. https://doi.org/10.1007/s12185-020-02974-y.

    Article  CAS  PubMed  Google Scholar 

  7. Mazepa MA, Masias C, Chaturvedi S. How targeted therapy disrupts the treatment paradigm for acquired TTP: the risks, benefits, and unknowns. Blood. 2019;134(5):415–20. https://doi.org/10.1182/blood.2019000954.

    Article  CAS  PubMed  Google Scholar 

  8. Scully M, Cataland SR, Peyvandi F, Coppo P, Knobl P, Kremer Hovinga JA, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.

    Article  CAS  PubMed  Google Scholar 

  9. Kierdorf H, Maurin N, Heintz B. Cyclosporine for thrombotic thrombocytopenic purpura. Ann Intern Med. 1993;118(12):987–8. https://doi.org/10.7326/0003-4819-118-12-199306150-00022.

    Article  CAS  PubMed  Google Scholar 

  10. Hand JP, Lawlor ER, Yong CK, Davis JH. Successful use of cyclosporine A in the treatment of refractory thrombotic thrombocytopenic purpura. Br J Haematol. 1998;100(3):597–9. https://doi.org/10.1046/j.1365-2141.1998.00602.x.

    Article  CAS  PubMed  Google Scholar 

  11. Bachman WR, Brennan JK. Refractory thrombotic thrombocytopenic purpura treated with cyclosporine. Am J Hematol. 1996;51(1):93–4. https://doi.org/10.1002/(sici)1096-8652(199601)51:1%3c93::Aid-ajh16%3e3.0.Co;2-c.

    Article  CAS  PubMed  Google Scholar 

  12. Itala M, Remes K. Excellent response of refractory life-threatening thrombotic thrombocytopenic purpura to cyclosporine treatment. Clin Lab Haematol. 2004;26(1):65–7. https://doi.org/10.1046/j.0141-9854.2003.00573.x.

    Article  CAS  PubMed  Google Scholar 

  13. Honda K, Hidaka S, Kobayashi S. Successful treatment with cyclosporine of thrombotic thrombocytopenic purpura refractory to corticosteroids and plasma exchange. Ther Apher Dial. 2011;15(2):215–7. https://doi.org/10.1111/j.1744-9987.2010.00904.x.

    Article  PubMed  Google Scholar 

  14. Nosari A, Redaelli R, Caimi TM, Mostarda G, Morra E. Cyclosporine therapy in refractory/relapsed patients with thrombotic thrombocytopenic purpura. Am J Hematol. 2009;84(5):313–4. https://doi.org/10.1002/ajh.21385.

    Article  PubMed  Google Scholar 

  15. Cataland SR, Jin M, Lin S, Kraut EH, George JN, Wu HM. Effect of prophylactic cyclosporine therapy on ADAMTS13 biomarkers in patients with idiopathic thrombotic thrombocytopenic purpura. Am J Hematol. 2008;83(12):911–5. https://doi.org/10.1002/ajh.21281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cataland SR, Jin M, Ferketich AK, Kennedy MS, Kraut EH, George JN, et al. An evaluation of cyclosporin and corticosteroids individually as adjuncts to plasma exchange in the treatment of thrombotic thrombocytopenic purpura. Br J Haematol. 2007;136(1):146–9. https://doi.org/10.1111/j.1365-2141.2006.06384.x.

    Article  CAS  PubMed  Google Scholar 

  17. Cataland SR, Jin M, Zheng XL, George JN, Wu HM. An evaluation of cyclosporine alone for the treatment of early recurrences of thombotic thrombocytopenic purpura. J Thromb Haemost. 2006;4(5):1162–4. https://doi.org/10.1111/j.1538-7836.2006.01909.x.

    Article  CAS  PubMed  Google Scholar 

  18. Cataland SR, Kourlas PJ, Yang S, Geyer S, Witkoff L, Wu H, et al. Cyclosporine or steroids as an adjunct to plasma exchange in the treatment of immune-mediated thrombotic thrombocytopenic purpura. Blood Adv. 2017;1(23):2075–82. https://doi.org/10.1182/bloodadvances.2017009308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bendapudi PK, Hurwitz S, Fry A, Marques MB, Waldo SW, Li A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4):e157–64. https://doi.org/10.1016/s2352-3026(17)30026-1.

    Article  PubMed  Google Scholar 

  20. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis RheumArthritis and rheumatism. 2012;64(8):2677–86. https://doi.org/10.1002/art.34473.

    Article  Google Scholar 

  21. Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion. 2006;46(8):1444–52. https://doi.org/10.1111/j.1537-2995.2006.00914.x.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto M, Fujimura Y, Wada H, Kokame K, Miyakawa Y, Ueda Y, et al. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) 2017 in Japan. Int J Hematol. 2017;106(1):3–15. https://doi.org/10.1007/s12185-017-2264-7.

    Article  PubMed  Google Scholar 

  23. Cataland SR, Jin M, Lin S, Kennedy MS, Kraut EH, George JN, et al. Cyclosporin and plasma exchange in thrombotic thrombocytopenic purpura: long-term follow-up with serial analysis of ADAMTS13 activity. Br J Haematol. 2007;139(3):486–93. https://doi.org/10.1111/j.1365-2141.2007.06819.x.

    Article  CAS  PubMed  Google Scholar 

  24. Sinha AA, Lopez MT, McDevitt HO. Autoimmune diseases: the failure of self tolerance. Science. 1990;248(4961):1380–8. https://doi.org/10.1126/science.1972595.

    Article  CAS  PubMed  Google Scholar 

  25. Cerny T, Borisch B, Introna M, Johnson P, Rose AL. Mechanism of action of rituximab. Anticancer Drugs. 2002;13(Suppl 2):S3-10. https://doi.org/10.1097/00001813-200211002-00002.

    Article  CAS  PubMed  Google Scholar 

  26. Damoiseaux JG, Beijleveld LJ, van Breda Vriesman PJ. Multiple effects of cyclosporin A on the thymus in relation to T-cell development and autoimmunity. Clin Immunol Immunopathol. 1997;82(3):197–202. https://doi.org/10.1006/clin.1996.4254.

    Article  CAS  PubMed  Google Scholar 

  27. Jhaveri KD, Scheuer A, Cohen J, Gordon B. Treatment of refractory thrombotic thrombocytopenic purpura using multimodality therapy including splenectomy and cyclosporine. Transfus Apher Sci. 2009;41(1):19–22. https://doi.org/10.1016/j.transci.2009.05.007.

    Article  PubMed  Google Scholar 

  28. Yilmaz M, Eskazan AE, Unsal A, Taninmis H, Kara E, Cetiner M, et al. Cyclosporin A therapy on idiopathic thrombotic thrombocytopenic purpura in the relapse setting: two case reports and a review of the literature. Transfusion. 2013;53(7):1586–93. https://doi.org/10.1111/j.1537-2995.2012.03944.x.

    Article  PubMed  Google Scholar 

  29. Acedillo RR, Govind M, Kashgary A, Clark WF. Treatment of severe, refractory and rapidly evolving thrombotic thrombocytopenic purpura. BMJ Case Rep. 2016. https://doi.org/10.1136/bcr-2016-215491.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pos W, Sorvillo N, Fijnheer R, Feys HB, Kaijen PH, Vidarsson G, et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica. 2011;96(11):1670–7. https://doi.org/10.3324/haematol.2010.036327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrari S, Mudde GC, Rieger M, Veyradier A, Kremer Hovinga JA, Scheiflinger F. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2009;7(10):1703–10. https://doi.org/10.1111/j.1538-7836.2009.03568.x.

    Article  CAS  PubMed  Google Scholar 

  32. Ferrari S, Scheiflinger F, Rieger M, Mudde G, Wolf M, Coppo P, et al. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood. 2007;109(7):2815–22. https://doi.org/10.1182/blood-2006-02-006064.

    Article  CAS  PubMed  Google Scholar 

  33. Sorvillo N, Pos W, van den Berg LM, Fijnheer R, Martinez-Pomares L, Geijtenbeek TB, et al. The macrophage mannose receptor promotes uptake of ADAMTS13 by dendritic cells. Blood. 2012;119(16):3828–35. https://doi.org/10.1182/blood-2011-09-377754.

    Article  CAS  PubMed  Google Scholar 

  34. Sorvillo N, van Haren SD, Kaijen PH, ten Brinke A, Fijnheer R, Meijer AB, et al. Preferential HLA-DRB1*11–dependent presentation of CUB2-derived peptides by ADAMTS13-pulsed dendritic cells. Blood. 2013;121(17):3502–10. https://doi.org/10.1182/blood-2012-09-456780.

    Article  CAS  PubMed  Google Scholar 

  35. Verbij FC, Turksma AW, de Heij F, Kaijen P, Lardy N, Fijnheer R, et al. CD4+ T cells from patients with acquired thrombotic thrombocytopenic purpura recognize CUB2 domain-derived peptides. Blood. 2016;127(12):1606–9. https://doi.org/10.1182/blood-2015-10-668053.

    Article  CAS  PubMed  Google Scholar 

  36. Sakai K, Kuwana M, Tanaka H, Hosomichi K, Hasegawa A, Uyama H, et al. HLA loci predisposing to immune TTP in Japanese: potential role of the shared ADAMTS13 peptide bound to different HLA-DR. Blood. 2020;135(26):2413–9. https://doi.org/10.1182/blood.2020005395.

    Article  PubMed  Google Scholar 

  37. Choi PYI, Roncolato F, Badoux X, Ramanathan S, Ho SJ, Chong BH. A novel triple therapy for ITP using high-dose dexamethasone, low-dose rituximab, and cyclosporine (TT4). Blood. 2015;126(4):500–3. https://doi.org/10.1182/blood-2015-03-631937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lansigan F, Isufi I, Tagoe CE. Microangiopathic haemolytic anaemia resembling thrombotic thrombocytopenic purpura in systemic lupus erythematosus: the role of ADAMTS13. Rheumatology (Oxford). 2011;50(5):824–9. https://doi.org/10.1093/rheumatology/keq395.

    Article  CAS  Google Scholar 

  39. Roose E, Schelpe AS, Tellier E, Sinkovits G, Joly BS, Dekimpe C, et al. Open ADAMTS13, induced by antibodies, is a biomarker for subclinical immune-mediated thrombotic thrombocytopenic purpura. Blood. 2020;136(3):353–61. https://doi.org/10.1182/blood.2019004221.

    Article  PubMed  Google Scholar 

  40. Lotta LA, Mariani M, Consonni D, Mancini I, Palla R, Maino A, et al. Different clinical severity of first episodes and recurrences of thrombotic thrombocytopenic purpura. Br J Haematol. 2010;151(5):488–94. https://doi.org/10.1111/j.1365-2141.2010.08385.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Uchino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchino, K., Sakai, K., Shinohara, S. et al. Successful preventive treatment with cyclosporine in a patient with relapsed/refractory immune-mediated thrombotic thrombocytopenic purpura: a case report and review of the literature. Int J Hematol 116, 295–301 (2022). https://doi.org/10.1007/s12185-022-03319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03319-7

Keywords

Navigation