Skip to main content

Advertisement

Log in

Long-acting granulocyte colony-stimulating factor pegfilgrastim (lipegfilgrastim) for stem cell mobilization in multiple myeloma patients undergoing autologous stem cell transplantation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Autologous stem cell transplantation (ASCT) is a standard of care in newly-diagnosed multiple myeloma (MM) patients. Several studies before the introduction of novel therapies in MM, demonstrated a pegylated G-CSF to be successful in mobilizing peripheral blood stem cells (PBSCs). Lipegfilgrastim is a novel long-acting G-CSF that is produced by the conjugation of a single 20-kDa polyethelene glycol to the natural O-glycosylation site of G-CSF. Twenty-four MM patients were included for PBSCs mobilization with a single SC injection of 6 mg lipegfilgrastim. PBSC collection was started when the CD34+ count was > 10 × 106 cells/L. The target progenitor cells were 6 × 106 cells/kg. The median day of apheresis was + 3 (range 2–5) following lipegfilgrastim. Median peripheral blood CD34+ count pre-mobilization was of 22.65 (range 3.36–105) × 106 cells/L. The median number of leukaphaeresis procedures was 2 (range 1–4). The median mobilized CD34+ cells/kg were 8.26 (range 0.77–12.42). One patient failed to mobilize and two patients mobilized < 6 × 106 cells/kg. Toxicity was mild and transient. Twenty-three patients underwent ASCT following high dose melphalan. All patients engrafted. As lipegfilgrastim is administered only once, it is conceivable that it improves both compliance and quality-of-life (NCT02488382).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335:91–7.

    Article  CAS  PubMed  Google Scholar 

  2. Palumbo A, Cavallo F, Gay F, Di Raimondo F, Ben Yehuda D, Petrucci MT, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371:895–905.

    Article  PubMed  CAS  Google Scholar 

  3. Gay F, Oliva S, Petrucci MT, Conticello C, Catalano L, Corradini P, et al. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: a randomised, multicentre, phase 3 trial. Lancet Oncol. 2015;16:1617–29.

    Article  CAS  PubMed  Google Scholar 

  4. Armitage S, Hargreaves R, Samson D, Brennan M, Kanfer E, Navarrete C. CD34 counts to predict the adequate collection of peripheral blood progenitor cells. Bone Marrow Trans. 1997;20:587–91.

    Article  CAS  Google Scholar 

  5. Giralt S, Costa L, Schriber J, Dipersio J, Maziarz R, McCarty J, et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Trans. 2014;20:295–308.

    Article  Google Scholar 

  6. Hagen PA, Stiff P. The role of salvage second autologous hematopoietic cell transplantation in relapsed multiple myeloma. Biol Blood Marrow Transp. 2019;25:e98–107.

    Article  CAS  Google Scholar 

  7. Ziogas DC, Terpos E, Dimopoulos MA. When to recommend a second autograft in patients with relapsed myeloma? Leuk Lymphoma. 2017;58:781–7.

    Article  CAS  PubMed  Google Scholar 

  8. Desikan KR, Tricot G, Munshi NC, Anaissie E, Spoon D, Fassas A, et al. Preceding chemotherapy, tumour load and age influence engraftment in multiple myeloma patients mobilized with granulocyte colony-stimulating factor alone. Br J Haematol. 2001;112:242–7.

    Article  CAS  PubMed  Google Scholar 

  9. Takeyama K, Ohto H. PBSC mobilization. Transfus Apher Sci. 2004;31:233–43.

    Article  PubMed  Google Scholar 

  10. Danylesko I, Sareli R, Varda-Bloom N, Yerushalmi R, Shem-Tov N, Shimoni A, et al. Plerixafor (mozobil): a stem cell-mobilizing agent for transplantation in lymphoma patients predicted to be poor mobilizers—a pilot study. Acta Haematol. 2016;135:29–36.

    Article  CAS  PubMed  Google Scholar 

  11. Steinberg M, Silva M. Plerixafor: a chemokine receptor-4 antagonist for mobilization of hematopoietic stem cells for transplantation after high-dose chemotherapy for non-Hodgkin’s lymphoma or multiple myeloma. Clin Ther. 2010;32:821–43.

    Article  CAS  PubMed  Google Scholar 

  12. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L, et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood. 1995;85:588–96.

    Article  CAS  PubMed  Google Scholar 

  13. DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E, et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27:4767–73.

    Article  CAS  PubMed  Google Scholar 

  14. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113:5720–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kim MG, Han N, Lee EK, Kim T. Pegfilgrastim vs filgrastim in PBSC mobilization for autologous hematopoietic SCT: a systematic review and meta-analysis. Bone Marrow Trans. 2015;50:523–30.

    Article  CAS  Google Scholar 

  16. Bruns I, Steidl U, Kronenwett R, Fenk R, Graef T, Rohr UP, et al. A single dose of 6 or 12 mg of pegfilgrastim for peripheral blood progenitor cell mobilization results in similar yields of CD34+ progenitors in patients with multiple myeloma. Transfusion. 2006;46:180–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hosing C, Qazilbash MH, Kebriaei P, Giralt S, Davis MS, Popat U, et al. Fixed-dose single agent pegfilgrastim for peripheral blood progenitor cell mobilisation in patients with multiple myeloma. Br J Haematol. 2006;133:533–7.

    Article  CAS  PubMed  Google Scholar 

  18. Tricot G, Barlogie B, Zangari M, van Rhee F, Hoering A, Szymonifka J, et al. Mobilization of peripheral blood stem cells in myeloma with either pegfilgrastim or filgrastim following chemotherapy. Haematologica. 2008;93:1739–42.

    Article  CAS  PubMed  Google Scholar 

  19. Abid MB, De Mel S, Abid MA, Yap ES, Gopalakrishnan SK, Chen Y, et al. Pegylated filgrastim versus filgrastim for stem cell mobilization in multiple myeloma after novel agent induction. Clin Lymphoma Myeloma Leuk. 2018;18:174–9.

    Article  PubMed  Google Scholar 

  20. Anguita-Compagnon AT, Dibarrart MT, Paredes L, Araos D, Vargas M, Majlis A. Peripheral blood stem cell mobilization with a single dose of PEG-filgrastim in patients with multiple myeloma previously treated with radiotherapy. Leuk Lymphoma. 2017;58:2724–7.

    Article  CAS  PubMed  Google Scholar 

  21. Weycker D, Barron R, Kartashov A, Legg J, Lyman GH. Incidence, treatment, and consequences of chemotherapy-induced febrile neutropenia in the inpatient and outpatient settings. J Oncol Pharm Pract. 2014;20:190–8.

    Article  PubMed  Google Scholar 

  22. Partanen A, Valtola J, Ropponen A, Kuitunen H, Kuittinen O, Vasala K, et al. Comparison of filgrastim, pegfilgrastim, and lipegfilgrastim added to chemotherapy for mobilization of CD34(+) cells in non-Hodgkin lymphoma patients. Transfusion. 2019;59:325–34.

    Article  CAS  PubMed  Google Scholar 

  23. Jantunen E, Fruehauf S. Importance of blood graft characteristics in auto-SCT: implications for optimizing mobilization regimens. Bone Marrow Trans. 2011;46:627–35.

    Article  CAS  Google Scholar 

  24. Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP. Higher infused lymphocyte dose predicts higher lymphocyte recovery, which in turn, predicts superior overall survival following autologous hematopoietic stem cell transplantation for multiple myeloma. Biol Blood Marrow Trans. 2008;14:116–24.

    Article  Google Scholar 

  25. Porrata LF, Litzow MR, Inwards DJ, Gastineau DA, Moore SB, Pineda AA, et al. Infused peripheral blood autograft absolute lymphocyte count correlates with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin’s lymphoma. Bone Marrow Trans. 2004;33:291–8.

    Article  CAS  Google Scholar 

  26. Porrata LF, Gertz MA, Inwards DJ, Litzow MR, Lacy MQ, Tefferi A, et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood. 2001;98:579–85.

    Article  CAS  PubMed  Google Scholar 

  27. Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN. Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma. 2003;44:997–1000.

    Article  CAS  PubMed  Google Scholar 

  28. Menendez P, Caballero MD, Prosper F, Del Canizo MC, Perez-Simon JA, Mateos MV, et al. The composition of leukapheresis products impacts on the hematopoietic recovery after autologous transplantation independently of the mobilization regimen. Transfusion. 2002;42:1159–72.

    Article  CAS  PubMed  Google Scholar 

  29. Porrata LF, Gertz MA, Geyer SM, Litzow MR, Gastineau DA, Moore SB, et al. The dose of infused lymphocytes in the autograft directly correlates with clinical outcome after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia. 2004;18:1085–92.

    Article  CAS  PubMed  Google Scholar 

  30. Tabilio A, Falzetti F, Giannoni C, Aversa F, Martelli MP, Rossetti M, et al. Stem cell mobilization in normal donors. J Hematother. 1997;6:227–34.

    Article  CAS  PubMed  Google Scholar 

  31. Grigg AP, Roberts AW, Raunow H, Houghton S, Layton JE, Boyd AW, et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood. 1995;86:4437–45.

    Article  CAS  PubMed  Google Scholar 

  32. Farhadfar N, Hsu JW, Logan BR, Sees JA, Chitphakdithai P, Sugrue MW, et al. Weighty choices: selecting optimal G-CSF doses for stem cell mobilization to optimize yield. Blood Adv. 2020;4:706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen J, Burns KM, Babic A, Carrum G, Kennedy M, Segura FJ, et al. Donor body mass index is an important factor that affects peripheral blood progenitor cell yield in healthy donors after mobilization with granulocyte-colony-stimulating factor. Transfusion. 2014;54:203–10.

    Article  CAS  PubMed  Google Scholar 

  34. Khouri J, Rybicki L, Majhail NS, Kalaycio M, Pohlman B, Hill B, et al. Body mass index does not impact hematopoietic progenitor cell mobilization for autologous hematopoietic cell transplantation. J Clin Apher. 2019;34:638–45.

    Article  PubMed  Google Scholar 

  35. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. Int J Epidemiol. 2014;43:655–65.

    Article  PubMed  Google Scholar 

  36. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.

    CAS  PubMed  Google Scholar 

  37. Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F, et al. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99:731–5.

    Article  CAS  PubMed  Google Scholar 

  38. Peled A, Abraham M, Avivi I, Rowe JM, Beider K, Wald H, et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin Cancer Res. 2014;20:469–79.

    Article  CAS  PubMed  Google Scholar 

  39. Rajkumar SV. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:719–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization. J Cell Biochem. 2006;99:690–705.

    Article  CAS  PubMed  Google Scholar 

  41. Gettys SC, Gulbis A, Wilhelm K, Sasaki K, Dinh Y, Rondon G, et al. Modified CVAD and modified CBAD compared to high-dose cyclophosphamide for peripheral blood stem cell mobilization in patients with multiple myeloma. Eur J Haematol. 2017;98:388–92.

    Article  CAS  PubMed  Google Scholar 

  42. Gertz MA, Kumar SK, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK, et al. Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant. 2009;43:619–25.

    Article  CAS  PubMed  Google Scholar 

  43. Turunen A, Partanen A, Valtola J, Ropponen A, Siitonen T, Kuittinen O, et al. CD34+ cell mobilization, blood graft composition, and posttransplant recovery in myeloma patients compared to non-Hodgkin’s lymphoma patients: results of the prospective multicenter GOA study. Transfusion. 2020;60:1519–28.

    Article  CAS  PubMed  Google Scholar 

  44. Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF, et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant. 2008;14:1045–56.

    Article  CAS  PubMed  Google Scholar 

  45. Lambertini M, Del Mastro L, Bellodi A, Pronzato P. The five “Ws” for bone pain due to the administration of granulocyte-colony stimulating factors (G-CSFs). Crit Rev Oncol Hematol. 2014;89:112–28.

    Article  PubMed  Google Scholar 

  46. Green MD, Koelbl H, Baselga J, Galid A, Guillem V, Gascon P, et al. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol. 2003;14:29–35.

    Article  CAS  PubMed  Google Scholar 

  47. Wang TF, Wen SH, Chen RL, Lu CJ, Zheng YJ, Yang SH, et al. Factors associated with peripheral blood stem cell yield in volunteer donors mobilized with granulocyte colony-stimulating factors: the impact of donor characteristics and procedural settings. Biol Blood Marrow Trans. 2008;14:1305–11.

    Article  Google Scholar 

  48. Cetin T, Arpaci F, Ozet A, Ozturk B, Komurcu S, Ihsan Uzar A, et al. Stem cell mobilization by G-CSF in solid and hematological malignancies: single daily dose is better than split dose in obese patients. J Clin Apher. 2003;18:120–4.

    Article  PubMed  Google Scholar 

  49. Basak GW, Wiktor-Jedrzejczak W, Apperley JF, Douglas KW, Gabriel IH, Geraldes C, et al. Higher BMI is not a barrier to stem cell mobilization with standard doses of plerixafor and G-CSF. Bone Marrow Trans. 2012;47:1003–5.

    Article  CAS  Google Scholar 

  50. Rutella S, Zavala F, Danese S, Kared H, Leone G. Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol. 2005;175:7085–91.

    Article  CAS  PubMed  Google Scholar 

  51. Saraceni F, Shem-Tov N, Olivieri A, Nagler A. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective. Bone Marrow Trans. 2015;50:886–91.

    Article  CAS  Google Scholar 

  52. Valtola J, Silvennoinen R, Ropponen A, Siitonen T, Saily M, Sankelo M, et al. Blood graft cellular composition and posttransplant outcomes in myeloma patients mobilized with or without low-dose cyclophosphamide: a randomized comparison. Transfusion. 2016;56:1394–401.

    Article  CAS  PubMed  Google Scholar 

  53. Aapro M, Boccia R, Leonard R, Camps C, Campone M, Choquet S, et al. Refining the role of pegfilgrastim (a long-acting G-CSF) for prevention of chemotherapy-induced febrile neutropenia: consensus guidance recommendations. Support Care Cancer. 2017;25:3295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bond TC, Szabo E, Gabriel S, Klastersky J, Tomey O, Mueller U, et al. Meta-analysis and indirect treatment comparison of lipegfilgrastim with pegfilgrastim and filgrastim for the reduction of chemotherapy-induced neutropenia-related events. J Oncol Pharm Pract. 2018;24:412–23.

    Article  CAS  PubMed  Google Scholar 

  55. Ziakas PD, Kourbeti IS. Pegfilgrastim vs. filgrastim for supportive care after autologous stem cell transplantation: can we decide? Clin Trans. 2012;26:16–22.

    Article  CAS  Google Scholar 

  56. Martino M, Gori M, Tripepi G, Recchia AG, Cimminiello M, Provenzano PF, et al. A comparative effectiveness study of lipegfilgrastim in multiple myeloma patients after high dose melphalan and autologous stem cell transplant. Ann Hematol. 2020;99:331–41.

    Article  CAS  PubMed  Google Scholar 

  57. Kroschinsky F, Holig K, Poppe-Thiede K, Zimmer K, Ordemann R, Blechschmidt M, et al. Single-dose pegfilgrastim for the mobilization of allogeneic CD34+ peripheral blood progenitor cells in healthy family and unrelated donors. Haematologica. 2005;90:1665–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank and acknowledge the contribution of all centers referring patients to this study. This investigator-initiated study was supported by an academic Grant from Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel (A.N). Teva Pharmaceutical Industries Ltd also supplied the lipegfilgrastim used in the investigation. The funder of the study had no role in study design, data collection and analysis, and manuscript writing. The primary investigator had full access to all data and had the final responsibility for the submission of the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivetta Danylesko.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danylesko, I., Sareli, R., Varda-Bloom, N. et al. Long-acting granulocyte colony-stimulating factor pegfilgrastim (lipegfilgrastim) for stem cell mobilization in multiple myeloma patients undergoing autologous stem cell transplantation. Int J Hematol 114, 363–372 (2021). https://doi.org/10.1007/s12185-021-03177-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03177-9

Keywords

Navigation