Skip to main content
Log in

Timely and large dose of clotting factor IX provides better joint wound healing after hemarthrosis in hemophilia B mice

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Bleeding into the joints represents the major morbidity of severe hemophilia and predisposes it to hemophilic arthropathy (HA). In a reproducible hemarthrosis mouse model, we found distinct changes in thrombin activity in joint tissue homogenate following exposure of the joint to blood in wide type (WT) and hemophilic B mice. Specifically, at early time points (4 h and 24 h) after hemarthrosis, thrombin activity in WT mice quickly peaked at 4 h, and returned to baseline after 1 week. In hemophilia B mice, there was no/minimal thrombin activity in joint tissues at 4 h and 24 h, whereas at 72 h and thereafter, thrombin activity kept rising, and persisted at a higher level. Nevertheless, prothrombin had not decreased in both WT and hemophilia. The pattern was also confirmed by Western blotting and immunostaining. To optimize the protection against development of HA, we tested different treatment regimens by administration of clotting factor IX into hemophilia B mouse after hemarthrosis induction, including a total of 600 IU/kg FIX within the first 24 h or the whole 2-week period. We concluded that timely (in the first 24 h) and sufficient hemostasis correction is critical for a better protection against the development of hemophilic arthropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hermans C. A changing haemophilia world: opportunities and challenges for the Haemophilia journal. Haemophilia. 2018;24:514–5.

    Article  PubMed  Google Scholar 

  2. Faber JC, Burnouf T. Bitter progress in the treatment of haemophilia A in low-income countries. Lancet Haematol. 2018;5:e239.

    Article  PubMed  Google Scholar 

  3. Srivastava A, Brewer AK, Mauser-Bunschoten EP, Key NS, Kitchen S, Llinas A, et al. Guidelines for the management of hemophilia. Haemophilia. 2013;19:e1–47.

    Article  CAS  PubMed  Google Scholar 

  4. Cooke EJ, Zhou JY, Wyseure T, Joshi S, Bhat V, Durden DL, et al. Vascular permeability and remodelling coincide with inflammatory and reparative processes after joint bleeding in factor VIII-deficient mice. Thromb Haemost. 2018;118:1036–47.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhat V, Olmer M, Joshi S, Durden DL, Cramer TJ, Barnes RF, et al. Vascular remodeling underlies rebleeding in hemophilic arthropathy. Am J Hematol. 2015;90:1027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kidder W, Chang EY, C MM, Rose SC, von Drygalski A. Persistent vascular remodeling and leakiness are important components of the pathobiology of re-bleeding in hemophilic joints: two informative cases. Microcirculation. 2016;23:373–8.

    Article  PubMed  Google Scholar 

  7. Lafeber FP, Miossec P, Valentino LA. Physiopathology of haemophilic arthropathy. Haemophilia. 2008;14(Suppl 4):3–9.

    Article  CAS  PubMed  Google Scholar 

  8. Soucie JM, Grosse SD, Siddiqi AE, Byams V, Thierry J, Zack MM, et al. The effects of joint disease, inhibitors and other complications on health-related quality of life among males with severe haemophilia A in the United States. Haemophilia. 2017;23:e287–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manco-Johnson MJ, Lundin B, Funk S, Peterfy C, Raunig D, Werk M, et al. Effect of late prophylaxis in hemophilia on joint status: a randomized trial. J Thromb Haemost. 2017;15:2115–24.

    Article  CAS  PubMed  Google Scholar 

  10. Manco-Johnson MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357:535–44.

    Article  CAS  PubMed  Google Scholar 

  11. Fischer K, Steen Carlsson K, Petrini P, Holmstrom M, Ljung R, van den Berg HM, et al. Intermediate-dose versus high-dose prophylaxis for severe hemophilia: comparing outcome and costs since the 1970s. Blood. 2013;122:1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun J, Hua B, Livingston EW, Taves S, Johansen PB, Hoffman M, et al. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood. 2017;129:2161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood. 1997;90:3962–6.

    CAS  PubMed  Google Scholar 

  14. Sun J, Hakobyan N, Valentino LA, Feldman BL, Samulski RJ, Monahan PE. Intraarticular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX. Blood. 2008;112:4532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valentino LA, Hakobyan N. Histological changes in murine haemophilic synovitis: a quantitative grading system to assess blood-induced synovitis. Haemophilia. 2006;12:654–62.

    Article  CAS  PubMed  Google Scholar 

  16. Narkbunnam N, Sun J, Hu G, Lin FC, Bateman TA, Mihara M, et al. IL-6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding-induced arthropathy in hemophilia. J Thromb Haemost. 2013;11:881–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffman M, Harger A, Lenkowski A, Hedner U, Roberts HR, Monroe DM. Cutaneous wound healing is impaired in hemophilia B. Blood. 2006;108:3053–60.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang TP, Jin DY, Wardrop RM III, Gui T, Maile R, Frelinger JA, et al. Transgene expression levels and kinetics determine risk of humoral immune response modeled in factor IX knockout and missense mutant mice. Gene Ther. 2007;14:429–40.

    Article  CAS  PubMed  Google Scholar 

  19. Waters B, Qadura M, Burnett E, Chegeni R, Labelle A, Thompson P, et al. Anti-CD3 prevents factor VIII inhibitor development in hemophilia A mice by a regulatory CD4 + CD25+-dependent mechanism and by shifting cytokine production to favor a Th1 response. Blood. 2009;113:193–203.

    Article  CAS  PubMed  Google Scholar 

  20. Nieuwenhuizen L, Roosendaal G, Coeleveld K, Lubberts E, Biesma DH, Lafeber FP, et al. Haemarthrosis stimulates the synovial fibrinolytic system in haemophilic mice. Thromb Haemost. 2013;110:173–83.

    Article  CAS  PubMed  Google Scholar 

  21. Nieuwenhuizen L, Schutgens RE, Coeleveld K, Mastbergen SC, Roosendaal G, Biesma DH, et al. Hemarthrosis in hemophilic mice results in alterations in M1-M2 monocyte/macrophage polarization. Thromb Res. 2014;133:390–5.

    Article  CAS  PubMed  Google Scholar 

  22. Sen D, Chapla A, Walter N, Daniel V, Srivastava A, Jayandharan GR. Nuclear factor (NF)-kappaB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia. J Thromb Haemost. 2013;11:293–306.

    Article  CAS  PubMed  Google Scholar 

  23. Ovlisen K, Kristensen AT, Jensen AL, Tranholm M. IL-1 beta, IL-6, KC and MCP-1 are elevated in synovial fluid from haemophilic mice with experimentally induced haemarthrosis. Haemophilia. 2009;15:802–10.

    Article  CAS  PubMed  Google Scholar 

  24. Sun J, Monahan GH. PE. TNF-alpha antagonists augment factor replacement to prevent arthropathy in hemophilic mice. J Thromb Haemost. 2009;7:1268.

    Article  Google Scholar 

  25. Hakobyan N, Enockson C, Cole AA, Sumner DR, Valentino LA. Experimental haemophilic arthropathy in a mouse model of a massive haemarthrosis: gross, radiological and histological changes. Haemophilia. 2008;14:804–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mejia-Carvajal C, Hakobyan N, Enockson C, Valentino LA. The impact of joint bleeding and synovitis on physical ability and joint function in a murine model of haemophilic synovitis. Haemophilia. 2008;14:119–26.

    CAS  PubMed  Google Scholar 

  27. Valentino LA, Hakobyan N, Kazarian T, Jabbar KJ, Jabbar AA. Experimental haemophilic synovitis: rationale and development of a murine model of human factor VIII deficiency. Haemophilia. 2004;10:280–7.

    Article  CAS  PubMed  Google Scholar 

  28. Valentino LA, Cong L, Enockson C, Song X, Scheiflinger F, Muchitsch EM, et al. The biological efficacy profile of BAX 855, a PEGylated recombinant factor VIII molecule. Haemophilia. 2015;21:58–63.

    Article  CAS  PubMed  Google Scholar 

  29. Elm T, Karpf DM, Ovlisen K, Pelzer H, Ezban M, Kjalke M, et al. Pharmacokinetics and pharmacodynamics of a new recombinant FVIII (N8) in haemophilia A mice. Haemophilia. 2012;18:139–45.

    Article  CAS  PubMed  Google Scholar 

  30. van Meegeren ME, Roosendaal G, Coeleveld K, Nieuwenhuizen L, Mastbergen SC, Lafeber FP. A single intra-articular injection with IL-4 plus IL-10 ameliorates blood-induced cartilage degeneration in haemophilic mice. Br J Haematol. 2013;160:515–20.

    Article  CAS  PubMed  Google Scholar 

  31. Lau AG, Sun J, Hannah WB, Livingston EW, Heymann D, Bateman TA, et al. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement. Haemophilia. 2014;20:716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun J, Hua B, Livingston EW, Taves S, Johansen PB, Hoffman M, et al. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood. 2016;129:2161–71

    Article  CAS  PubMed  Google Scholar 

  33. Christensen KR, Kjelgaard-Hansen M, Nielsen LN, Wiinberg B, Alexander Althoehn F, Bloksgaard Poulsen N, et al. Rapid inflammation and early degeneration of bone and cartilage revealed in a time-course study of induced haemarthrosis in haemophilic rats. Rheumatology (Oxford). 2018;58:588–99

    Article  Google Scholar 

  34. Hoppe B, Dorner T. Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat Rev Rheumatol. 2012;8:738–46.

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Lu Y, Chu Y, Xie J, Ding W, Wang F. Tissue factor expression in rheumatoid synovium: a potential role in pannus invasion of rheumatoid arthritis. Acta Histochem. 2013;115:692–7.

    Article  CAS  PubMed  Google Scholar 

  36. Busso N, Morard C, Salvi R, Peclat V, So A. Role of the tissue factor pathway in synovial inflammation. Arthritis Rheum. 2003;48:651–9.

    Article  CAS  PubMed  Google Scholar 

  37. Sun J, Hua B, Chen X, Samulski RJ, Li C. Gene delivery of activated factor VII using alternative adeno-associated virus serotype improves hemostasis in hemophiliac mice with FVIII Inhibitors and adeno-associated virus neutralizing antibodies. Hum Gene Ther. 2017;28:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gui T, Lin HF, Jin DY, Hoffman M, Straight DL, Roberts HR, et al. Circulating and binding characteristics of wild-type factor IX and certain Gla domain mutants in vivo. Blood. 2002;100:153–8.

    Article  CAS  PubMed  Google Scholar 

  39. Poonnoose P, Carneiro JDA, Cruickshank AL, El Ekiaby M, Perez Bianco RP, Ozelo MC, et al. Episodic replacement of clotting factor concentrates does not prevent bleeding or musculoskeletal damage—the MUSFIH study. Haemophilia. 2017;23:538–46.

    Article  CAS  PubMed  Google Scholar 

  40. Simpson ML, Valentino LA. Management of joint bleeding in hemophilia. Expert Rev Hematol. 2012;5:459–68.

    Article  CAS  PubMed  Google Scholar 

  41. Arruda VR, Doshi BS, Samelson-Jones BJ. Novel approaches to hemophilia therapy: successes and challenges. Blood. 2017.

  42. Valentino LA, Hakobyan N, Enockson C, Simpson ML, Kakodkar NC, Cong L, et al. Exploring the biological basis of haemophilic joint disease: experimental studies. Haemophilia. 2012;18:310–8.

    Article  CAS  PubMed  Google Scholar 

  43. McDonald AG, Yang K, Roberts HR, Monroe DM, Hoffman M. Perivascular tissue factor is down-regulated following cutaneous wounding: implications for bleeding in hemophilia. Blood. 2008;111:2046–8.

    Article  CAS  PubMed  Google Scholar 

  44. Acharya SS, Kaplan RN, Macdonald D, Fabiyi OT, DiMichele D, Lyden D. Neoangiogenesis contributes to the development of hemophilic synovitis. Blood. 2011;117:2484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kashiwakura Y, Ohmori T, Mimuro J, Yasumoto A, Ishiwata A, Sakata A, et al. Intra-articular injection of mesenchymal stem cells expressing coagulation factor ameliorates hemophilic arthropathy in factor VIII-deficient mice. J Thromb Haemost. 2012;10:1802–13.

    Article  CAS  PubMed  Google Scholar 

  46. Ohmori T, Mizukami H, Katakai Y, Kawai S, Nakamura H, Inoue M, et al. Safety of intra-articular transplantation of lentivirally transduced mesenchymal stromal cells for haemophilic arthropathy in a non-human primate. Int J Hematol. 2018;108:239–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Animal Histopathology and Laboratory Medicine Core at UNC-CH for histology processing. This work was partly supported by a research grant from Asklepios BioPharmaceutical (to J.S.). H.B.L. is supported by Beijing Municipal Natural Science Foundation (No 7162151) and the Novo Nordisk Hemophilia China Research Fund. It is also supported by “the Fundamental Research Funds for the Central Universities”. Parts of work were supervised by Dr. Paul E Monahan during his work in UNC-Chapel Hill. We acknowledge the language editing from Editage (http://www.editage.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baolai Hua or Junjiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2019_2639_MOESM1_ESM.pptx

Supplemental Figure: Dynamic changes of Tissue Factor expression in synovium after hemarthrosis induction in hemophilic mice Joint hemorrhage was induced in FIX KO mice. Day 1 to 14 d post joint bleeding, joints were collected, fixed, decalcified and sectioned for immunostaining for tissue factor. Representative images were shown. Naïve FIX KO mice served as “D0” controls. Upper panels: × 4 magnification, lower panels: × 40 magnification

Supplementary Materials: Materials and Methods: TF IHC staining

: Antigen retrieval was performed by heating the sections at 95 ºC in 10 mM citrate buffer (pH 6.0) for 20 min. Endogenous peroxidase activity was blocked by incubation in Dako Dual endogenous enzyme Block solution (Dako, Carpinteria, CA, USA). Binding of primary antibody, rabbit anti-mouse tissue factor IgG (American Diagnositca, Stanford, CT, USA), was detected with a biotinylated goat anti-rabbit antibody (Vector Labs, Burlingame, CA, USA), which employed avidin and biotin and was visualized with diaminobenzidine (DAB) substrate from Dako

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Zhang, F., Zhong, C. et al. Timely and large dose of clotting factor IX provides better joint wound healing after hemarthrosis in hemophilia B mice. Int J Hematol 110, 59–68 (2019). https://doi.org/10.1007/s12185-019-02639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02639-5

Keywords

Navigation