Skip to main content
Log in

Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

An Erratum to this article was published on 09 February 2017

Abstract

The poor prognosis of adults with B cell precursor acute lymphoblastic leukemia (BCP-ALL) is attributed to leukemia cells that are protected by the bone marrow (BM) microenvironment. In the present study, we explored the pharmacological targeting of mesenchymal stromal/stem cells in BM (BM-MSCs) to eliminate chemoresistant BCP-ALL cells. Human BCP-ALL cells (NALM-6 cells) that adhered to human BM-MSCs (NALM-6/Ad) were highly resistant to multiple anti-cancer drugs, and exhibited pro-survival characteristics, such as an enhanced Akt/Bcl-2 pathway and increased populations in the G0 and G2/S/M cell cycle stages. Bortezomib, a proteasome inhibitor, interfered with adhesion between BM-MSCs and NALM-6 cells and up-regulated the matricellular protein SPARC (secreted protein acidic and rich in cysteine) in BM-MSCs, thereby reducing the NALM-6/Ad population. Inhibition of SPARC expression in BM-MSCs using a small interfering RNA enhanced adhesion of NALM-6 cells. Conversely, recombinant SPARC protein interfered with adhesion of NALM-6 cells. These results suggest that SPARC disrupts adhesion between BM-MSCs and NALM-6 cells. Co-treatment with bortezomib and doxorubicin prolonged the survival of BCP-ALL xenograft mice, with a significant reduction of leukemia cells in BM. Our findings demonstrate that bortezomib contributes to the elimination of BCP-ALL cells through disruption of their adhesion to BM-MSCs, and offer a novel therapeutic strategy for BCP-ALL through targeting of BM-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jinnai I, Sakura T, Tsuzuki M, Maeda Y, Usui N, Kato M, et al. Intensified consolidation therapy with dose-escalated doxorubicin did not improve the prognosis of adults with acute lymphoblastic leukemia: the JALSG-ALL97 study. Int J Hematol. 2010;92:490–502.

    Article  CAS  PubMed  Google Scholar 

  2. Huguet F, Leguay T, Raffoux E, Thomas X, Beldjord K, Delabesse E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol. 2009;27:911–8.

    Article  CAS  PubMed  Google Scholar 

  3. Storring JM, Minden MD, Kao S, Gupta V, Schuh AC, Schimmer AD, et al. Treatment of adults with BCR-ABL negative acute lymphoblastic leukaemia with a modified paediatric regimen. Br J Haematol. 2009;146:76–85.

    Article  PubMed  Google Scholar 

  4. Dhédin N, Huynh A, Maury S, Tabrizi R, Beldjord K, Asnafi V, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015;125:2486–96.

    Article  PubMed  Google Scholar 

  5. Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113:4153–62.

    Article  CAS  PubMed  Google Scholar 

  6. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.

    Article  CAS  PubMed  Google Scholar 

  7. Jacamo R, Chen Y, Wang Z, Ma W, Zhang M, Spaeth EL, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood. 2014;123:2691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miura Y. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol. 2016;103:122–8.

    Article  CAS  PubMed  Google Scholar 

  9. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A, et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia. 2007;21:1249–57.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshioka S, Miura Y, Yao H, Satake S, Hayashi Y, Tamura A, et al. CCAAT/enhancer-binding protein β expressed by bone marrow mesenchymal stromal cells regulates early B-cell lymphopoiesis. Stem Cells. 2014;32:730–40.

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Mallampati S, Sun B, Zhang J, Kim SB, Lee JS, et al. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 2013;333:9–17.

    Article  CAS  PubMed  Google Scholar 

  12. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17.

    Article  CAS  PubMed  Google Scholar 

  13. Hideshima T, Anderson KC. Preclinical studies of novel targeted therapies. Hematol Oncol Clin North Am. 2007;21:1071–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Murphy-Ullrich JE, Sage EH. Revisiting the matricellular concept. Matrix Biol. 2014;37:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 2001;19:816–27.

    Article  CAS  PubMed  Google Scholar 

  16. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981;26:99–105.

    Article  CAS  PubMed  Google Scholar 

  17. Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339:605–15.

    Article  CAS  PubMed  Google Scholar 

  18. DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29:526–34.

    Article  CAS  PubMed  Google Scholar 

  19. Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150:389–405.

    PubMed  Google Scholar 

  20. Nishii K, Katayama N, Miwa H, Shikami M, Masuya M, Shiku H, et al. Survival of human leukaemic B-cell precursors is supported by stromal cells and cytokines: association with the expression of bcl-2 protein. Br J Haematol. 1999;105:701–10.

    Article  CAS  PubMed  Google Scholar 

  21. Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood. 2013;121:4821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14:2519–26.

    Article  CAS  PubMed  Google Scholar 

  23. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    Article  CAS  PubMed  Google Scholar 

  24. Lee BH, Ruoslahti E. alpha5beta1 integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin-dependent protein kinase IV. J Cell Biochem. 2005;95:1214–23.

    Article  CAS  PubMed  Google Scholar 

  25. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9:1158–65.

    Article  CAS  PubMed  Google Scholar 

  26. Oriol A, Vives S, Hernández-Rivas JM, Tormo M, Heras I, Rivas C, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica. 2010;95:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bornstein P. Cell-matrix interactions: the view from the outside. Methods Cell Biol. 2002;69:7–11.

    Article  CAS  PubMed  Google Scholar 

  28. Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis. 2014;35:967–73.

    Article  CAS  PubMed  Google Scholar 

  29. Chlenski A, Cohn SL. Modulation of matrix remodeling by SPARC in neoplastic progression. Semin Cell Dev Biol. 2010;21:55–65.

    Article  CAS  PubMed  Google Scholar 

  30. Murphy-Ullrich JE, Lane TF, Pallero MA, Sage EH. SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J Cell Biochem. 1995;57:341–50.

    Article  CAS  PubMed  Google Scholar 

  31. Nie J, Chang B, Traktuev DO, Sun J, March K, Chan L, et al. IFATS collection: combinatorial peptides identify alpha5beta1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells. 2008;26:2735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas SL, Alam R, Lemke N, Schultz LR, Gutiérrez JA, Rempel SA. PTEN augments SPARC suppression of proliferation and inhibits SPARC-induced migration by suppressing SHC-RAF-ERK and AKT signaling. Neuro Oncol. 2010;12:941–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Massi D, Franchi A, Borgognoni L, Reali UM, Santucci M. Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum Pathol. 1999;30:339–44.

    Article  CAS  PubMed  Google Scholar 

  35. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001;20:4519–27.

    Article  CAS  PubMed  Google Scholar 

  36. Terpos E, Migkou M, Christoulas D, Gavriatopoulou M, Eleutherakis-Papaiakovou E, Kanellias N, et al. Increased circulating VCAM-1 correlates with advanced disease and poor survival in patients with multiple myeloma: reduction by post-bortezomib and lenalidomide treatment. Blood Cancer J. 2016;6:e428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yoko Nakagawa for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Miura.

Ethics declarations

Grants

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology in Japan (#26293277 and #15K09453, Y.M. and T.I.; #16H00656, N.S.). This work was also supported in part by the Program of the network-type joint Usage/Research Disaster Medical Science of Hiroshima University, Nagasaki University, and Fukushima Medical University (Y.M., S.F., and T.I.), the Kyoto Prevention Medical Center (Y.M.), and the Takeda Science Foundation (Y.M.).

Conflict of interest

The authors declare no conflict of interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12185-017-2182-8.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1971 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasa, M., Miura, Y., Fujishiro, A. et al. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells. Int J Hematol 105, 587–597 (2017). https://doi.org/10.1007/s12185-016-2169-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2169-x

Keywords

Navigation